
Searching Web Data: an Entity Retrieval and High-Performance Indexing Model

Renaud Delbrua, Stephane Campinasa, Giovanni Tummarelloa,b

aDigital Enterprise Research Institute,
National University of Ireland, Galway

Galway, Ireland
bFondazione Bruno Kessler

Trento, Italy

Abstract

More and more (semi) structured information is becoming available on the Web in the form of documents embedding
metadata (e.g., RDF, RDFa, Microformats and others). There are already hundreds of millions of such documents
accessible and their number is growing rapidly. This calls for large scale systems providing effective means of search-
ing and retrieving this semi-structured information with the ultimate goal of making it exploitable by humans and
machines alike.

This article examines the shift from the traditional web document model to a web data object (entity) model and
studies the challenges faced in implementing a scalable and high performance system for searching semi-structured
data objects over a large heterogeneous and decentralised infrastructure. Towards this goal, we define an entity re-
trieval model, develop novel methodologies for supporting this model and show how to achieve a high-performance
entity retrieval system. We introduce an indexing methodology for semi-structured data which offers a good com-
promise between query expressiveness, query processing and index maintenance compared to other approaches. We
address high-performance by optimisation of the index data structure using appropriate compression techniques. Fi-
nally, we demonstrate that the resulting system can index billions of data objects and provides keyword-based as well
as more advanced search interfaces for retrieving relevant data objects in sub-second time.

This work has been part of the Sindice search engine project at the Digital Enterprise Research Institute (DERI),
NUI Galway. The Sindice system currently maintains more than 200 million pages downloaded from the Web and is
being used actively by many researchers within and outside of DERI.

Keywords: Sindice, Information Retrieval, Entity Retrieval, Indexing Scheme, Compression, Semantic Web, Web
Data, Semi-Structured Data, RDF, Inverted Index, Search Engine, Entity Search

1. Introduction

More and more structured and semi-structured data
sources are becoming available. With the current avail-
ability of data publishing standards and tools, publish-
ing semi-structured data on the Web, which from here
on we will simply call Web Data, is becoming a mass
activity. Indeed, nowadays it is not limited to a few
trained specialists any more. Instead, it is open to in-
dustries, governments and individuals. For example,
the Linked Open Data1 community has made avail-
able hundreds of data sources, driven by the idea of

Email addresses: renaud.delbru@deri.org (Renaud
Delbru), stephane.campinas@deri.org (Stephane Campinas),
giovanni.tummarello@deri.org (Giovanni Tummarello)

1Linked Data: http://linkeddata.org/

open access to data. There are also many prominent
fields in which examples of semi-structured data pub-
lishing efforts exist: e-government, e.g., the UK gov-
ernment which publicly shares open government data;
editorial world, e.g., the New York Times or Reuters
which publish rich metadata about their news articles;
e-commerce, e.g., BestBuy which publishes product
descriptions in a machine-readable format; social net-
working, e.g., Facebook’s Open Graph Protocol which
enables any web page to become a rich object in a social
graph; etc.

However, the usefulness of Web Data publishing
is clearly dependent of the ease by which data can
be discovered and consumed by others. Taking the
e-commerce example, how can a user find products
matching a certain description pattern over thousands

Preprint submitted to Journal of Web Semantics April 3, 2011



of e-commerce data sources ? By entering simple key-
words into a web search system, the results are likely to
be irrelevant since the system will return pages mention-
ing the keywords and not the matching products them-
selves. Current search systems are inadequate for this
task since they have been developed for a totally dif-
ferent model, i.e., a Web of Documents. The shift from
documents to data objects poses new challenges for web
search systems. One of the main challenge is to develop
efficient and effective methods for searching and retriev-
ing data objects among decentralised data sources.

1.1. Information Retrieval for Web Documents

Information Retrieval systems for the Web, i.e., web
search engines, are mainly devoted to finding relevant
web documents in response to a user’s query. Such a
retrieval system is following a document-centric model,
since the whole system is organised around the concept
of document. The representation of a document which
is commonly adopted is the full-text logical view [1]
where a document is seen as a set or sequence of words.

With the scale and nature of the Web, Information Re-
trieval systems had to face new problems. Web search
engines have to provide access to billions of documents.
Indexing and query processing at this scale requires ad-
vanced techniques to provide good quality results in
sub-second response time [2]. While Information Re-
trieval systems for Web Data have to face similar prob-
lems, they have to deal with an additional factor: the
information and search requests are semi-structured in-
stead of being unstructured. Moving from unstructured
to semi-structured information raises new challenges
but also provides new opportunities for developing more
advanced search techniques.

1.2. Information Retrieval for Web Data

Compared to web documents, web data is providing
some kind of structure. However, since each of the web
data sources has its own defined schema, ranging from
loosely to strictly defined, the data structure does not
follow strict rules as in a database. Even in one data
source, the schema might not be fixed and may change
as the information grows. The information structure
evolves over time, and new records can require new at-
tributes. We therefore consider Web Data as being semi-
structured [3].

The semi-structured information items that are found
on the Web are very diverse. These items can describe
a person, a product, a location, a document, etc. In fact,
these items can describe any kind of entities. We con-
sider these items, which from here on we will simply

call entity descriptions, as the principal units of infor-
mation to be searched and retrieved. Compared to a
document, an entity description is a more complex data
object which is composed of a set of attribute and value
pairs and possibly a set of relations to other entities. We
envision that the task of an Information Retrieval sys-
tem for Web Data is to provide a list of relevant entity
descriptions in response to some information request
which can be semi-structured itself. This task is indeed
a valuable one. A great fraction of the user’s queries
(more than half of them) are entity-centric [4], and the
potential of web data for this task is immense compared
to that of web documents. For these reasons, we organ-
ise our retrieval model around the concept of an entity
as opposed to the concept of a document found in tra-
ditional web search engines, and design the query lan-
guage so to be able to support the needs of entity search
(e.g., restrictions on attributes). We say that the retrieval
system is following an entity-centric model.

1.3. Challenges in Information Retrieval for Web Data:
Contributions

In this article, we study the challenges in building
a large scale and high performance Information Re-
trieval system for Web Data. By large scale, we mean
a system that can be deployed on a very large num-
ber of machines and that grows gracefully as the data
and user volume increases. By high-performance, we
mean a system that handles a continuous flow of update
requests and that answers many queries in sub-second
time.

A first problem in building such a retrieval system
is to cope with the shift from the traditional document-
centric model to the entity-centric model. There is
a need to reassess the retrieval model as well as the
boolean search model which does not provide founda-
tions for querying semi-structured data. Section 3 which
introduces our entity retrieval model undertakes pre-
cisely that task.

Also, the retrieval system has to offer advanced
search interfaces and provide an access to billions of
entities in sub-second response times. New index struc-
tures as well as new index optimisations are needed to
incorporate semi-structured information in the system
while sustaining a fast query computation and an effi-
cient index maintenance. As a first step towards that
goal, we propose in Section 4 a node-based inverted in-
dex that supports our entity retrieval model. Then, in
Section 5, we introduce a high-performance compres-
sion technique which has tremendous benefits with re-
spect to the node-based indexing scheme. In Section 6,

2



we show that the combination of the compression tech-
nique with the node-indexing scheme results in a high-
performance retrieval system that can index billions of
entities while sustaining sub-second response time.

In Section 2, we review existing works from domains
such as indexing and searching semi-structured data. Fi-
nally, Section 7 recalls the main findings of the research
and discusses the tasks that remain.

2. Related Work

In this section, we first give a retrospective of retrieval
systems for structured documents, before presenting an
overview of the current approaches for indexing and
querying RDF data. Finally, we review existing search
models for semi-structured and structured data.

2.1. Retrieval of Structured Documents

The problem with a traditional document retrieval
system is its inability to capture the structure of a doc-
ument, since a document is seen as a “bag of words”.
In order to query the content as well as the structure
of the document, many models have been developed
to support queries integrating content (words, phrases,
etc.) and structure (for example, the table of contents).
Amongst them, we can cite the hybrid model, PAT ex-
pressions, overlapped lists and proximal nodes. We re-
fer the reader to [5] for a comparison of these mod-
els. By mixing content and structure, more expressive
queries become possible such as relations between con-
tent and structural elements or between structural ele-
ments themselves. For example, it becomes possible to
restrict the search of a word within a chapter or a sec-
tion, or to retrieve all the citations from a chapter.

With the increasing number of XML documents
published on the Web, new retrieval systems for the
XML data model have been investigated. Certain ap-
proaches [6, 7, 8] have investigated the use of keyword-
based search for XML data. Given a keyword query,
these systems retrieve document fragments and use a
ranking mechanism to increase the search result qual-
ity. However, such systems are restricted to key-
word search and do not support complex structural con-
straints. Therefore, other approaches [9, 10] have in-
vestigated the use of both keyword-based and struc-
tural constraints. In the meantime, various indexing
techniques have been developed for optimising the pro-
cessing of XPath queries, the standardised query lan-
guage for XML [11]. The three major techniques
are the node index scheme [12, 13, 14], the graph
index scheme [15, 16, 17], and the sequence index

scheme [18, 19, 20, 21, 22]. The node index scheme
relies on node labelling techniques [23] to encode the
tree structure of an XML document in a database or
in an inverted index. Graph index schemes are based
on secondary indexes that contain structural path sum-
maries in order to avoid join operations during query
processing. Sequence index schemes encode the struc-
ture into string sequences and use string matching tech-
niques over these sequences to answer queries.

More recently, the Database community has inves-
tigated the problem of search capabilities over semi-
structured data in Dataspaces [24]. [25] proposes a
sequence index scheme to support search over loosely
structured datasets using conditions on attributes and
values. However, the sequence indexing scheme is in-
appropriate for large heterogeneous data collections as
discussed in Section 4.4.

2.2. Retrieval of RDF Data
With the growth of RDF data published on the Se-

mantic Web, applications demand scalable and efficient
RDF data management systems. Different RDF storage
strategies have been proposed based on RDBMS [26],
using native index [27, 28, 29, 30] or lately using
column-oriented DBMS using vertical partitioning over
predicates [31].

RDF data management systems excel in storing large
amounts of RDF data and are able of answering com-
plex conjunctive SPARQL queries involving large joins.
Typical SPARQL queries are graph patterns combining
SQL-like logical conditions over RDF statements with
regular-expression patterns. The result of a query is a set
of subgraphs matching precisely the graph pattern de-
fined in the query. This search and retrieval paradigm is
well adapted for retrieving data from large RDF datasets
with a globally known schema such as a social network
graph or a product catalog database. However, such ap-
proaches are of very limited value when it comes to
searching over highly heterogeneous data collections.
The variance in the data structure and in the vocabular-
ies makes it difficult to write precise SPARQL queries.
In addition, none of the above approaches uses struc-
tural and content similarity between the query and the
data graph for ordering results with respect to their esti-
mated relevance with the query.

Other approaches [32, 33, 34, 35] carried over
keyword-based search to Semantic Web and RDF data
in order to provide ranked retrieval using content-based
relevance estimation. In addition, such systems are
more easy to scale due to the simplicity of their indexing
scheme. However, such systems are restricted to key-
word search and do not support structural constraints.

3



These systems do not consider the rich structure pro-
vided by RDF data. A first step towards a more powerful
search interface combining imprecise keyword search
with precise structural constraints has been investigated
by K-Search [36] and Semplore [37]. Semplore [37]
has extended inverted index to encode RDF graph ap-
proximations and to support keyword-based tree-shaped
queries over RDF graphs. However, we will see in Sec-
tion 4.4 that the increase of query capabilities comes at a
cost, and the scalability of the system becomes limited.

2.3. Search Models for Semi-Structured Data
In addition to standardised query languages such as

SPARQL, XQuery or XPath, a large number of search
models for semi-structured data can be found in the lit-
erature. Some of them focus on searching structured
databases [38, 39, 40, 41], XML documents [7, 6, 8]
or graph-based data [42, 43, 44] using simple keyword
search. Simple keyword-based search has the advan-
tages of (1) being easy to use by users since it hides
from the user any structural information of the under-
lying data collection, and (2) of being applicable on
any scenarios. On the other hand, the keyword-based
approach suffers from limited capability of expressing
various degrees of structure when users have a partial
knowledge about the data structure.

Other works [45, 46, 37, 25, 47] have extended sim-
ple keyword-based search with structured queries ca-
pabilities. In [25, 47], they propose a partial solution
to the lack of expressiveness of the keyword-based ap-
proach by allowing search using conditions on attributes
and values. In [45, 46, 37], they present more powerful
query language by adopting a graph-based model. How-
ever, the increase of query expressiveness is tied with
the processing complexity, and the graph-based models
[45, 46, 37] are not applicable on a very large scale.

The search model introduced in Section 3 is simi-
lar to [25, 47], i.e., it is defined around the concept of
attribute-value pairs. However, our model is more ex-
pressive since it differentiates between single and multi-
valued attributes and it considers the provenance of the
information.

3. An Entity Retrieval Model for Web Data∗

In this section, we introduce an entity retrieval model
for semi-structured information found in distributed and
heterogeneous data sources. This model is used as a
common framework to develop various methodologies

∗This section is partially based on [48]

for the entity retrieval system. For example in this ar-
ticle, we use it to design our indexing system. How-
ever, such a model has also been used for (1) designing
a link analysis technique [49] for measuring the impor-
tance of an entity by exploiting the peculiar properties of
links between datasets and entities, and (2) a distributed
reasoning mechanism [48] which is tolerant to low data
quality. We start by examining the Web Data scenario
before introducing a data model that encompasses its
core concepts. We finally discuss some requirements
for searching semi-structured information and introduce
our boolean search model and query algebra.

3.1. An Abstract Model for Web Data
For the purpose of this work, we use the follow-

ing model for Web Data. We define Web Data as
part of the Hypertext Transfer Protocol (HTTP) [50]
accessible Web that returns semi-structured informa-
tion using standard interchange formats and practices.
The standard data interchange formats include HTML
pages which embed RDFa or Microformats as well
as RDF models using different syntaxes such as RD-
F/XML [51].

3.1.1. Practical Use Case
To support the Web Data scenario, we take as an

example the case of a personal web dataset. A personal
web dataset is a set of semi-structured information
published on one personal web site. The web site is
composed of multiple documents, either using HTML
pages embedding RDFa or using plain RDF files.
Each of these documents contains a set of statements
describing one or more entities. By aggregating the
semi-structured content of these documents altogether,
we can recreate a dataset or RDF graph. Figure 1
depicts such a case. The content, or database, of the
web site http://renaud.delbru.fr/ is exposed
through various accessible online documents, among
them http://renaud.delbru.fr/rdf/foaf and
http://renaud.delbru.fr/publications.html.
The former document provides information about the
owner of the personal web site and about its social rela-
tionships. The second document provides information
about the publications authored by the owner of the
web site. Each of them is providing complementary
pieces of information which when aggregated provide a
more complete view about the owner of the web site.

3.1.2. Model Abstraction
In the previous scenario, it is possible to abstract

the following core concepts in semi-structured data web
publishing: dataset, entity and view:

4



Figure 1: A sample of a personal web dataset. The
dataset http://renaud.delbru.fr/ makes available
partial view of its content in the form of documents con-
taining semi-structured data. The aggregation of all the
views enables the reconstruction of the dataset in the
form of a data graph.

A dataset is a collection of entity descriptions. One
dataset is usually the content of a database which
powers a web application exposing metadata, be
this a dynamic web site with just partial meta-
data markups or a RDF database which exposes
its content such as the Linked Open Data datasets.
Datasets however can also come in the form
of a single RDF document, e.g., an individual
FOAF file posted on a person’s homepage. A
dataset is uniquely identified by a URI, e.g.,
http://renaud.delbru.fr/ as depicted in Fig-
ure 1.

An entity description is a set of assertions about an
entity and belongs to a dataset. The assertions pro-
vide information regarding the entity such as at-
tributes, for instance, the firstname and surname
for a person, or relationships with other entities, for
instance, the family members for a person. An en-
tity description has a unique identifier, e.g., a URI,
with respect to a dataset.

A View represents a single accessible piece of informa-
tion which provides a full or partial view over the
dataset content. In the case of Linked Open Data,
a typical view is the RDF model returned when
one dereferences the URI of an entity. The Linked
Open Data views are 1 to 1 mapping from the URI
to the complete entity description2. This however

2In Database terminology, this would be considered as a Record.

Figure 2: The three-layer model of Web Data

is more the exception than the rule for other kind
of Web Data publishing where most often only par-
tial entity descriptions are provided in the views.
For example in the case of Microformats or RDFa,
views are pages that talk about different aspects of
the entity, e.g., a page listing social contacts for a
person, a separate page listing personal data as well
as a page containing all the posts by a user.

As shown in Figure 1, the union of all the views pro-
vided within a context, e.g., a web site, might enable an
agent, e.g., a crawler, to reconstruct the entire dataset.
There is no guarantee on this since it is impossible to
know if we are in possession of every piece of informa-
tion about an entity. The problem of retrieving the views
and reconstructing a dataset is more related to data ac-
quisition which is out of scope of this article.

These abstract concepts are used to define a three
layer model, which is graphically represented in Fig-
ure 2. This model forms a common base for various
methodologies developed towards the creation of an en-
tity retrieval system. As mentioned before, the model is
also used in other works [49, 48].

3.2. Formal Model
For the purpose of this work, we need a generic graph

model that supports the previous scenario and covers
the three layer model discussed previously. First, we
define a labelled directed graph model that covers the
various type of Web Data sources, i.e., Microformats,
RDFa, RDF databases, etc. This graph model represents
datasets, entities and their relationships. With respect

However, we think that the concept of View is more appropriate for the
Web Data scenario given that entity descriptions are in fact the result
of a join query returning a set of triples.

5



to the graph model, we define an Entity Attribute-Value
model that will shape the indexing system described in
Section 4.

3.2.1. Data Graph
Let V be a set of nodes and A a set of labelled edges.

The set of nodes V is composed of two non-overlapping
sets: a set of entity nodes VE and a set of literal nodes
VL. Let L be a set of labels composed of a set of node
labels LV and a set of edge labels LA.

Web Data is defined as a graph G over L, and is a
tuple G = 〈V, A, λ〉 where λ : V → LV is a node la-
belling function. The set of labelled edges is defined as
A ⊆ {(e, α, v)|e ∈ VE , α ∈ LA, v ∈ V}. The components
of an edge a ∈ A will be denoted by source(a), label(a)
and target(a) respectively.

3.2.2. Dataset
A dataset is defined as a subgraph of the Web Data

graph:

Definition 3.1 (Dataset). A dataset D over a graph G =

〈V, A, λ〉 is a tuple D = 〈VD, AD,L
V
D, λ〉 with VD ⊆ V

and AD ⊆ A.

We identify a subsetLV
D ⊆ L

V of node labels to be in-
ternal to a dataset D, i.e., the set of entity identifiers and
literals that originates from this dataset. For example,
such a set might include the URIs and literals defined
by the naming authority of the dataset [52].

Definition 3.2 (Internal Node). A node v ∈ V is said to
be internal to a dataset D if λ(v) ∈ LV

D.

Analogously, we identify as external a node with a
label that does not belong to LV

D.

Definition 3.3 (External Node). A node v ∈ V is said to
be external to a dataset D if λ(v) < LV

D.

We assume that a literal node is always internal to a
dataset D. A literal is always defined with respect to an
entity and within the context of a dataset. Therefore, if
two literal nodes have identical labels, we consider them
as two different nodes in the graph G. This assumption
does not have consequences in this paper. In fact, this
can be seen as a denormalisation of the data graph which
increases the number of nodes in order to simplify data
processing.

Two datasets are not mutually exclusive and their en-
tity nodes VE

D ⊆ VD may overlap, i.e., VE
D1
∩ VE

D2
, ∅,

since (1) two datasets can contain identical external
entity nodes, and (2) the internal entity nodes in one
dataset can be external entity nodes in another dataset.

3.2.3. Data Links
While the notion of links is mainly used in link analy-

sis scenario [49], we describe it for the completeness of
the model. In a dataset, we identify two types of edges:
intra-dataset and inter-dataset edges. An intra-dataset
edge is connecting two internal nodes, while an inter-
dataset edge is connecting one internal node with one
external node.

Definition 3.4 (Intra-Dataset Edge). An edge a ∈

AD is said to be intra-dataset if λ(source(a)) ∈

LV
D, λ(target(a)) ∈ LV

D.

Definition 3.5 (Inter-Dataset Edge). An edge a ∈

AD is said to be inter-dataset if λ(source(a)) ∈

LV
D, λ(target(a)) < LV

D or if λ(source(a)) <
LV

D, λ(target(a)) ∈ LV
D.

We group inter-dataset links into linkset. For exam-
ple, in Figure 2 the inter-dataset links l1,3 between D1
and D3 are aggregated to form the linkset L1,3 on the
dataset layer.

Definition 3.6 (Linkset). Given two datasets Di and D j,
we denote a linkset between Di and D j with Lα,i, j =

{a|label(a) = α, source(a) ∈ Di, target(a) ∈ D j} the set
of edges having the same label α and connecting the
dataset Di to the dataset D j.

3.2.4. Entity Attribute-Value Model
A dataset provides information about an entity in-

cluding its relationships with other entities and its at-
tributes. Consequently, a subgraph describing an entity
can be extracted from a dataset.

The simplest form of description for an (internal or
external) entity node e is a star graph, i.e., a subgraph
of a dataset D with one central node e and one or more
(inter-dataset or intra-dataset) edges. Figure 3 shows
how the RDF graph from Figure 1 can be split into three
entities me, :b1 and paper/5. Each entity description
forms a sub-graph containing the incoming and outgo-
ing edges of the entity node. More complex graphs
might be extracted, but their discussion is out of scope
of this paper.

An entity description is defined as a tuple 〈e, Ae,Ve〉

where e ∈ VE
D the entity node, Ae ⊆ {(e, α, v)|α ∈

LA
D, v ∈ Ve} the set of labelled edges representing the

attributes and Ve ⊆ VD the set of nodes representing
values.

Conceptually, an entity is represented by an identifier,
a set of attributes and a set of values for these attributes.
Such a model is similar to the Entity Attribute Value
model (EAV) [53] which is typically used for represent-
ing highly sparse data with many attributes. Under this

6



Figure 3: A visual representation of the RDF graph
from Figure 1 divided into three entities identified by
the nodes me, :b1 and paper/5.

Figure 4: An example of EAV model derived from the
three subgraphs from Figure 3.

model, we can depict the dataset example from Figure 1
as a set of EAV tables in Figure 4.

In its most simple form, an attribute is composed by
one edge connecting two nodes, the central entity node e
and a value node v. However, this is not always the case.
More complex attributes such as multi-valued attributes
are composed of more than one edge. We present and
define in the following the possibles types of attributes
we aim to support.

Attribute. An attribute represents an atomic character-
istic of an entity, for example the name of a person or
the title of a publication.

Definition 3.7 (Attribute). Given an entity e, an at-
tribute is defined as being an edge (e, α, v)|α ∈ LA, v ∈
Ve

Single-Valued Attribute. A single-valued attribute is an
attribute that holds exactly one value. For example, the
birthdate is a single-valued property since a person has
only one birthdate.

Definition 3.8 (Single-Valued Attribute). Given an en-
tity e, a single-valued attribute is an attribute with ex-
actly one value (e, α, v)|∃!v target(α) = v.

Multi-Valued Attribute. An attribute is multi-valued
when it has more than one value. For example, the email
address of a person can be a multi-valued attribute since
a person has possibly more than one email address.

Definition 3.9 (Multi-Valued Attribute). Given an en-
tity e, a multi-valued attribute is a set, with at least two
members, of attributes having the same label α ∈ LA

but with different value nodes.

Based on this Entity Attribute-Value data model, we
introduce a boolean search model which enables the re-
trieval of entities. We define formally this search model
with a query algebra.

3.3. Search Model
The search model presented here adopts a semi-

structural logical view as opposed to the full-text logical
view of traditional web search engines. We do not rep-
resent an entity by a bag of words, but we instead con-
sider its set of attribute-value pairs. The search model
is therefore restricted to search entities using a boolean
combination of attribute-value pairs. We aim to support
three types of queries:

full-text query: the typical keyword based queries,
useful when the data structure is unknown;

structural query: complex queries specified in a star-
shaped structure, useful when the data schema is
known;

semi-structural query: a combination of the two
where full-text search can be used on any part of
the star-shaped query, useful when the data struc-
ture is partially known.

This gradual increase of query structure enables to ac-
commodate various kind of information requests, from
vague using full-text queries to precise using structural
queries. The type of request depends on the awareness
of the data structure by the user and on the user exper-
tise.

The main use case for which this search model is de-
veloped is entity search: given a description pattern of
an entity, i.e., a star-shaped queries such as the one in
Figure 5, locate the most suitable entities and datasets.
This means that, in terms of granularity, the search
needs to move from a “document” centric point of view
(as per normal web search) to a “dataset-entity” centric
point of view.

3.3.1. Search Query Algebra
In this section, we introduce a formal model of our

search query language. For clarity reasons, we adopt
a model which is similar to the relational query alge-
bra [54], where the inputs and outputs of each operator
are “relations”. All operators in the algebra accept one
or two relations as arguments and return one relation as
a result. We first describe the relations that are used in

7



Figure 5: A star-shaped query matching the description
graph of the entity me from Figure 3. ? stands for the
bound variable and ? for a wildcard.

Dataset Entity Attribute Value

delbru.fr me name Renaud Delbru

delbru.fr me knows :b1

delbru.fr paper/5 creator me

(a) Entity Attribute Value rela-
tion R1

Dataset Entity Attribute Value

delbru.fr paper/5 title ActiveRDF

delbru.fr paper/5 creator me

delbru.fr me name Renaud Delbru

(b) Entity Attribute Value rela-
tion R2

Table 1: An example of two Entity Attribute Value rela-
tions, R1 and R2

the algebra before introducing the basic operators of the
algebra.

Relations. For the purpose of the query algebra, we
define an entity attribute value table as a relation
〈dataset, entity, attribute, value〉 where the fields

dataset holds the label of a dataset D;
entity holds the label of the entity node e ∈ VE

D;
label holds the attribute label α ∈ LA;
value holds the label of the value node.

Table 1a and Table 1b depict two relations that are de-
rived from the EAV model of Figure 4. These two rela-
tions are used as inputs in the following examples.

In the next algebra formulas, we will use d to denote
the fields dataset, e for entity, at for attribute and v for
value.

Set Operations. Since relations are considered as sets,
boolean operations such as union (∪), intersection (∩)
and set-difference (\) are applicable on relations.

Keyword Selection. The search unit is a keyword k ∈ K
where K is the lexicon of the Web Data graph, i.e., the
set of distinct words occurring in L.

Let W : L → K a function that maps a label l ∈ L to
a set of words K ⊂ K . Given a keyword k, if k ∈ W(l),
it means that the word denoted by k appears at least one
time in the label l. We say that k matches l.

The Keyword Selection operator σ is a unary opera-
tor. The selection operator allows to specify the relation
instances to retain through a keyword selection condi-
tion.

Dataset Entity Attribute Value

delbru.fr me name Renaud Delbru

(a) σv:renaud(R1) or σv:“renaud delbru”(R1)

Dataset Entity

delbru.fr me

(b) πd,e(σv:renaud(R1))

Table 2: An example showing the selection and projec-
tion operations

Definition 3.10 (Keyword Selection). Given a keyword
selection condition c and a relation R, the keyword se-
lection operator σc(R) is defined as a set of relation in-
stances {r|r ∈ R} for which the condition c is true.

The most basic form of a keyword selection condition
is to test if a given keyword k occurs in one of the field
f of a relation R, which is denoted by f:k. For example,
one can test if the keyword k occurs in the dataset label
of a relation instance r (denoted by r.d):

σd:k(R) : {r|r ∈ R, k ∈ W(r.d)}

or in the value node label of a relation instance r (de-
noted by r.v):

σv:k(R) : {r|r ∈ R, k ∈ W(r.v)}

The selection operator has the following properties.
The proofs of these properties can be found in [54].

idempotent: multiple applications of the same selec-
tion operator have no additional effect beyond the
first one as show in equation (1a).

commutative: the order of the selections has no effect
on the result as show in equation (1b).

distributive: the selection is distributive over the set-
difference, intersection and union operators as
show in equation (1c), where γ = ∩,∪ or \.

σ f :k(σ f :k(R)) = σ f :k(R) (1a)
σ f :k1 (σ f :k2 (R)) = σ f :k2 (σ f :k1 (R)) (1b)

σ f :k(RγS ) = σ f :k(R) γ σ f :k(S ) (1c)

In general, the keyword selection condition is de-
fined by a boolean combination of keywords using the
logical operators ∧,∨ or ¬. A keyword selection us-
ing a boolean combination of keywords is identical to
a boolean combination of keyword selections as shown
in equations (2a), (2b) and (2c). Also, two nested selec-
tions are equivalent to an intersection of two selections
as shown in equation (2d).

σ f :k1 (R) ∩ σ f :k2 (R) = σ f :k1∧ f :k2 (R) (2a)
σ f :k1 (R) ∪ σ f :k2 (R) = σ f :k1∨ f :k2 (R) (2b)
σ f :k1 (R) \ σ f :k2 (R) = σ f :k1¬ f :k2 (R) (2c)

σ f :k1 (σ f :k2 (R)) = σ f :k1∧ f :k2 (R) (2d)

8



Dataset and Entity Projection. The projection operator
π allows to extract specific columns, such as dataset or
entity, from a relation. For example, the expression:

πd,e(R)

returns a relation with only two columns, dataset and
entity, as shown in Figure 2b.

The projection is idempotent, a series of projections
is equivalent to the outermost projection, and is distribu-
tive over set union but not over intersection and set-
difference [54]:

πe(σ f :k1 (R1) ∩ σ f :k2 (R2)) , πe(σ f :k1 (R1)) ∩ πe(σ f :k2 (R2))

πe(σ f :k1 (R1) ∪ σ f :k2 (R2)) = πe(σ f :k1 (R1)) ∪ πe(σ f :k2 (R2))

πe(σ f :k1 (R1) \ σ f :k2 (R2)) , πe(σ f :k1 (R1)) \ πe(σ f :k2 (R2))

4. Node-Based Indexing for Web Data∗

In this section, we present the Semantic Information
Retrieval Engine, SIREn, a system based on Informa-
tion Retrieval (IR) techniques and conceived to index
Web Data and search entities in large scale scenarios.
The requirements have therefore been:

1. Support for the multiple formats which are used on
the Web of Data;

2. Support for entity centric search;
3. Support for context (provenance) of information:

entity descriptions are given in the context of a
website or dataset;

4. Support for semi-structural full text search, top-k
query, incremental index maintenance and scala-
bility via shard over clusters of commodity ma-
chines.

With respect to point 1, 2 and 3, we have developed
SIREn to support the Entity Attribute-Value model from
Section 3.2.4 and the boolean search model from Sec-
tion 3.3, since these models cover RDF, Microformats
and likely other forms of semi-structured data that can
be found of the Web. Finally, we will see in Section 4.3
that the entity centric indexing enables SIREn to lever-
age well known Information Retrieval techniques to ad-
dress the point 4.

The section is organized as follows. We present the
node-labelled data model in Section 4.1 and the associ-
ated query model in Section 4.2. We describe in Sec-
tion 4.3 how to extend inverted lists as well as update
and query processing algorithms to support the node la-
belled data model. An analysis of the differences and
theoretical performances between SIREn and other en-
tity retrieval systems is given in Section 4.4.

∗This section is partially based on [55]

4.1. Node-Labelled Tree Model

SIREn adopts a node-labelled tree model to capture
the relation between datasets, entities, attributes and val-
ues. The tree model is pictured in Figure 6a. The tree
has four different kind of nodes: dataset, entity, attribute
and value. The organisation of the nodes in the tree
is based on the containment order of the concepts (i.e.,
dataset, entity, attribute, value). Other tree layout would
create unnecessary node repetitions. In fact, the tree en-
codes a Entity Attribute Value table, where each branch
of the tree represents one row of the Entity Attribute
Value table. Each node can refer to one or more terms.
In the case of RDF, a term is not necessarily a word from
a literal, but can be an URI or a local blank node iden-
tifier. The incoming relations of an entity, i.e., all edges
where the entity node is the target, are symbolised by a
attribute node with a −1 tag in Figure 6b.

A node-labelled tree model enables one to encode
and efficiently establish relationships between the nodes
of a tree. The two main types of relations are Parent-
Child and Ancestor-Descendant which are also core op-
erations in XML query languages such as XPath. To
support these relations, the requirement is to assign
unique identifiers, called node labels, that encode the
relationships between the nodes. Several node labelling
schemes have been developed [23] but in the rest of the
paper we use a simple prefix scheme, the Dewey Order
encoding [56].

In Dewey Order encoding, each node is assigned a
vector that represents the path from the tree’s root to
the node and each component of the path represents the
local order of an ancestor node. Using this labelling
scheme, structural relationships between elements can
be determined efficiently. An element u is an ancestor of
an element v if label(u) is a prefix of label(v). Figure 6b
depicts a data tree where nodes have been labelled us-
ing Dewey’s encoding. Given the label 〈1.1.1.1〉 for the
term Renaud, we can find that its parent is the attribute
name, labelled with 〈1.1.1〉.

The node labelled tree is embedded into an inverted
index. The inverted index stores for each term occur-
rence its node label, i.e., the path of elements from the
root node (dataset) to the node (attribute or value) that
contains the term. A detailed description of how this
tree model is encoded into an inverted index is given in
Section 4.3.

4.2. Query Model

In this section, we present a set of query operators
over the content and the structure of the node-labelled
tree which covers the boolean search model presented

9



(a) Conceptual representation of the
node-labelled tree model

(b) Node-labelled tree model using Dewey’s encoding of
the example dataset from Section 3.1.1

Figure 6: The node-labelled tree model

in Section 3.3. We will present the query operators of
SIREn and whenever possible compare them with the
search query algebra from Section 3.3.1.

4.2.1. Content operators
The content operators are the only ones that access

the content of a node and are orthogonal to the struc-
ture operators. The atomic search element is a key-
word. Multiple keywords can be combined with tra-
ditional keyword search operations. Such operations
include boolean operators (intersection, union, differ-
ence), proximity operators (phrase, near, before, after,
etc.), fuzzy or wildcard operators, etc.

These operators give the ability to express complex
keyword queries. A keyword query is used to retrieve
a particular set of nodes. Interestingly, it is possible to
apply these operators not only on literals, but also on
URIs, if URIs are tokenized and normalized. For exam-
ple one could just use an RDF local name, e.g., name, to
match foaf:name ignoring the namespace.

With respect to the search query algebra of Sec-
tion 3.3.1, the content operators are mapped to the key-
word selection operators. The query algebra only de-
fines the boolean operators, but it is easy to see how
to extend the algebra for including proximity or other
operators. Also, the content operators allow to restrict
keyword search to a particular type of nodes, being ei-
ther dataset, entity, attribute or value. However, in the
following we assume that this restriction is implicit and
thus is not shown in the following examples.

4.2.2. Structure operators
The structure operators are accessing the structure of

the data tree. The atomic search element is a node. Mul-
tiple nodes can be combined using tree and set opera-
tors. The tree operators, i.e. the Ancestor-Descendant
and Parent-Child operators, allow to query node rela-
tionships and to retrieve the paths matching a given

pattern. The combination of paths are possible using
set operators, enabling the computation of star-shaped
queries such as the one pictured in Figure 5.

Ancestor-Descendant - A//D. A node A is the ances-
tor of a node D if there exists a path between A and
D. The operator checks the node labels and retains
only relations where the label of A is a prefix of the
label of D. For example, in Figure 6b, the operation
renaud.delbru.fr // paper/5 will retain the rela-
tions [1] // [1.1.3.1] and [1] // [1.2]. With
respect to the query algebra from Section 3.3.1, we in-
terpret an Ancestor-Descendant operator as a keyword
selection applied on a second operation. For exam-
ple, Query Q4 in Appendix A can be interpreted as an
Ancestor-Descendant operator where σd:biblio is the an-
cestor and R1 ∩ R2 is the descendant.

Parent-Child - P/C. A node P is the parent of a node
C if P is an ancestor of C and C is exactly one level
above P. The operator checks the node labels and retains
only relations where the label of P is the longest prefix
matching the label of C. For example, in Figure 6b, the
operation creator−1 / paper/5 will retain the rela-
tion [1.1.3] / [1.1.3.1]. With respect to the query
algebra from Section 3.3.1, we also interpret a Parent-
Child operator as a keyword selection applied on a sec-
ond operation. Query Q2 in Appendix A can be inter-
preted as an Parent-Child operator where σat:author is the
parent and σv: john∧v:smith is the child.

Set manipulation operators. These operators allow the
manipulation of nodes (dataset, entity, attribute and
value) as sets, implementing union (∪), difference (\)
and intersection (∩). These operators are mapped one to
one to the set operators found in the query algebra from
Section 3.3.1. For example, Query Q3 in Appendix A
can be interpreted as an intersection R1 ∩ R2 between

10



two Parent-Child operators, σat:author(σv: john∧v:smith) and
σat:title(σv:search∧v:engine).

Projection. The dataset and entity projection defined in
Section 3.3.1 are simply performed by applying a filter
over the node labels in order to keep the dataset and en-
tity identifiers and filter out unnecessary identifiers such
as the attribute or value identifier.

4.3. Implementing the Model

We describe in this section how the tree model is im-
plemented on top of an inverted index. We first de-
scribe how we extend the inverted index data structure
before explaining the incremental index updating and
query processing algorithms. We refer the reader to
[55] which discusses how query results are ranked dur-
ing query processing.

4.3.1. Node-Based Inverted Index
An inverted index is composed of (1) a lexicon, i.e.,

a dictionary of terms that allows fast term lookup; and
(2) of a set of inverted lists, one inverted list per term.
In a node-based inverted index, the node labels, or
Dewey’s vectors, that are associated with each term are
stored within the inverted lists. Compared to the tra-
ditional document-based inverted index, the difference
is situated in the structure of the inverted lists. Orig-
inally, an inverted list is composed of a list of docu-
ment identifiers, a list of term frequencies and a list of
term positions. In our implementation, an inverted list is
composed of five different streams of integers: a list of
entity identifiers, of term frequencies, of attribute iden-
tifiers, of value identifiers and of term positions. The
term frequency corresponds to the number of times the
term has been mentioned in the entity description. The
term position corresponds to the relative position of the
term within the node.

However, it is unnecessary to associate each term to
the five streams of integers. For example, a term appear-
ing in an attribute node does not have a value identifier.
Also, the probability to have more than one occurrence
of the same term in the entity, attribute and dataset nodes
is very low. Therefore, we assume that terms from en-
tity, attribute and dataset nodes always appear a single
time in the node. In that case, their term frequency is al-
ways equal to one, and it becomes unnecessary to store
it. By carefully selecting what information is stored
for each term, the index size is reduced and the overall
performance improves since less data has to be written
during indexing and read during query processing. The

(a) Inverted files for dataset and
entity nodes

(b) Inverted files for attribute
nodes

(c) Inverted files for value nodes

Figure 7: Diagram showing the set of inverted lists and
their inter-connection for each type of terms.

strategy is to associate each term to a set of different in-
verted files depending on which node the term appears
as described next. This depicted in Figure 7.

dataset and entity: Terms from a dataset or entity
node are associated to a list of entity identifiers
and to their relative position within the node as
shown in Figure 7a. The position of a term within a
node is necessary to support phrase and proximity
queries.

attribute: Terms from an attribute node are associated
to a list of entity identifiers, a list of attribute iden-
tifiers and to their relative position within the node
as shown in Figure 7b.

value: Terms from a value node are associated to a list
of entity identifiers, a list of term frequencies, a
list of attribute identifiers, a list of value identifiers
and to their relative positions within the node as
shown in Figure 7c. We consider that a term can
appear more than once in one or more value nodes.
Therefore, each entity identifier is associated to a
variable number (specified by the term frequency)
of attribute identifiers, value identifiers and posi-
tions.

Instead of storing the dataset identifier of the Dewey’s
vector, we are encoding the relation between dataset
terms and entity identifiers. This can be considered
as a simplification of the data model from Section 4.1.
This approach only enables a partial support of dataset
queries since queries such as Query Q5 in Appendix A
can not be answered efficiently. However, this reduces
the update complexity and enables more efficient incre-
mental updates. Such a choice is discussed more in de-
tails in Section 4.3.4.

11



4.3.2. Incremental Update of the Inverted Lists
The proposed model supports incremental updates of

entities as it is performed for documents in traditional
inverted indexes [57]. Adding an entity corresponds to
adding a set of statements to the inverted index. The
statements are first transformed into a node-labelled tree
data model as in Figure 6b. Then, for each term of the
tree, the associated inverted lists are accessed and up-
dated with respect to the Dewey’s vectors and positions
of the term.

For example, to add a new occurrence of a term t from
a value node, the following operations are performed:

1. the inverted files of t is accessed by performing a
lookup in the lexicon;

2. a new entry is appended to the list of entity iden-
tifiers, term frequencies, attribute identifiers, value
identifiers and positions.

If the same term t appears in a entity or dataset node,
then the operations are similar than the previous ones
with the difference that only the list of entity identifiers
and term positions is accessed and updated.

The complexity of insertion of one term occurrence
is O(log(n) + k), where the term log(n) denotes the cost
of looking up a term in a lexicon of n terms and the term
k denotes the cost of appending an integer to k inverted
lists. The lexicon lookup is the predominant cost during
the insertion of one term occurrence. However, updates
are usually performed by batches of multiple entities.
In this case, the update complexity becomes linear with
the number of term occurrences since a lexicon lookup
is only performed once per term.

Compared to common RDF databases, we do not sup-
port deletion on a statement granularity, but we support
the deletion of a dataset or entity. When an entity is
removed, its identifier is inserted into a deletion table.
When a dataset is deleted, the associated entity identi-
fiers are inserted into the deletion table. During query
processing, each entity identifiers is checked against the
deletion table in O(1) to ensure that it has not been
deleted. The deletion table is integrated back to the in-
verted index only when a certain amount of deletion is
sufficient to amortize the cost of a such maintenance op-
eration.

4.3.3. Query Processing
The evaluation of a query works in a bottom-up fash-

ion. First, matching on the content (terms) of a node is
performed, then node information is used during list in-
tersection for filtering the result candidates that do not
belong to a same node or branch of the tree.

The intersection of two inverted lists is the most com-
mon operation during query processing. For exam-
ple, a content operator such as the boolean intersection
and phrase proximity operators relies on a list inter-
section. The structure operators such as the Ancestor-
Descendant, Parent-Child and boolean intersection op-
erators also rely on list intersection. The methodology
is identical for all of them and is described by the fol-
lowing merge algorithm:

1. The inverted list of each term is retrieved.
2. We position the pointers to the first element of each

inverted list.
3. We then walk through the inverted lists simulta-

neously. At each step, we perform the following
operations:

(a) We first compare their node information.
(b) If the comparison is positive,

i. we add the entity identifier to the result
list;

ii. we advance the list pointers to their next
position.

(c) If the comparison is negative, we move for-
ward the list pointer with the smallest identi-
fier to its next position.

However, the comparison between node information
that is performed at step 3.a is slightly different depend-
ing on the query operator employed. In the case of a
boolean intersection between two words, the algorithm
compares first their entity identifiers, then their attribute
identifiers and finally compare their value identifiers. In
the case of a proximity operator, the position informa-
tion is additionally compared. Concerning Ancestor-
Descendant and Parent-Child operators, the compari-
son is restricted to the elements of the ancestor node
to mimic the node label prefix matching as explained in
Section 4.1. For example, if a word from a dataset node
and a word from a value node are intersected to check a
Ancestor-Descendant relation, then only the entity iden-
tifier is compared.

Given the query creator−1 / paper/5, the query
evaluation is performed as follows. In the following ex-
amples, we display the node information as a Dewey’s
vector and omit the position information for simplicity.

1. Postings List Fetching

(a) Retrieve the inverted list for the term
“creator−1”: [1.0],[1.3]

(b) Retrieve the inverted list for the term “pa-
per/5”: [1.3.1]

2. Inverted List Merging

12



(a) position the pointers to the first element of the
two lists.

(b) compare the entity identifiers. The two entity
identifiers are equal to 1.

(c) compare the attribute identifiers. The first
pointer has an attribute identifier <0> inferior
to the second pointer <3>. We move the first
pointer to the next occurrence.

(d) compare the attribute identifiers. This time,
the two attribute identifiers are equal to 3. We
have a match and add the entity identifier in
the result list.

The worst-case complexity of a query evaluation is in
time linear to the total number of term occurrences in
the inverted list [58]. In the average case, the complex-
ity of an intersection is reduced to sub-linear time with
the use of self-indexing [59] over the entity identifiers
in order to skip and avoid unnecessary record compar-
isons.

Each query operator delivers output in sorted order.
Multiple operators can be nested without losing the
sorted order of the output, therefore enjoying the con-
cept of interesting orderings [60] enabling the use of ef-
fective merge-joins without intermediate result sorting.

4.3.4. Handling Dataset Query
As we explained previously, the current implementa-

tion partially supports dataset queries. Dataset queries
such as Query Q4 from Appendix A that restrict entity
matching to a certain dataset are possible. However, it
is not possible to support efficiently dataset queries such
as Query Q5 that retrieve all datasets involving two or
more entity queries. The reason is that it is not possible
at query time to know the dataset identifier associated to
each entity, thus making impossible the intersection of
the two entity relations based on an equality condition
over their dataset identifier.

In order to support such an intersection, we would
have to encode the relation between the dataset node
with all the other nodes by storing a list of dataset iden-
tifiers in every inverted lists. However, this will consid-
erably increase the update complexity since it will be
necessary to keep a global order in the dataset identifier
lists and a local order in the entity identifier lists within
each dataset. With such requirements, it is difficult to
implement an efficient incremental update procedure.

4.4. Comparison among Entity Retrieval Systems

In this section, we evaluate four entity retrieval sys-
tems: SIREn based on a node-labelled index, field-
based indexes [25], RDF databases [27, 28, 29, 30]

based on quad tables and Semplore [37]. These tech-
niques are representative of the current approaches
for entity retrieval. Comparing under fair conditions
these techniques with an experimental benchmark is ex-
tremely difficult due to the differences in the implemen-
tations, programming languages, code optimisations,
and features for which these systems are designed and
built. In this work we therefore concentrate on provid-
ing a theoretical comparison. However, we refer the in-
terested reader to [55] where we perform an experimen-
tal benchmark to compare the performance of SIREn
against RDF databases with respect to incremental in-
dexing and structured query processing. As we can see
in this paper, perhaps one of the most striking difference
is in the index maintenance where inverted index shows
a nearly-constant update time.

A quad table is a fairly conventional data structure
in RDF database mangement systems that is composed
of four columns s, p, o, c called respectively “subject”,
“predicate”, “object” and “context”. In each table,
quads are sorted and indexed by a particular set of
columns. This allows for the quick retrieval of quads
that conform to access patterns where any of these
columns are specified. These access patterns are the
basic building blocks from which complex SPARQL
queries are constructed. In order to cover all access pat-
terns, multiple quad tables are necessary [27].

Field-based indexing schemes are generally used in
standard document retrieval systems such as Apache
Lucene3 to support basic semi-structured information
like document’s fields, e.g., the title. A field index is
a type of sequence index scheme (see Section 2.1) that
constructs lexicon terms by concatenating the field or
attribute name, e.g., the predicate URI, with the terms
from the content of this field. For example, in the graph
depicted in Figure 3, the index terms for the entity “gio-
vanni” and its predicate name will be represented as
name:giovanni and name:tummarello. In fact, the field
index encodes the relation between an attribute and a
value directly within the lexicon.

Semplore is an Information Retrieval engine for
querying Semantic Web data which supports hybrid
queries, i.e., a subset of SPARQL mixed with full text
search. Semplore is also built on inverted lists and re-
lies on three inverted indexes: (1) an ontology index
that stores the ontology graph (concepts and properties),
(2) an individual path index that contains information
for evaluating path queries, and (3) an individual con-
tent index that contains the content of the textual prop-
erties.

3Apache Lucene: http://lucene.apache.org/

13



Criteria Node Index Field Index Quad Table Semplore

Dictionary Lookup O(log(n)) O(log(n ∗ m)) O(log(n)) O(log(n))

Quad Lookup O(log(n)) O(log(n ∗ m)) O(log(n) + log(k)) O(log(n))

Join in Quad Lookup Yes No No No

Star Query Evaluation Sub-Linear Sub-Linear O(n) O(n ∗ log(n))

Update Cost O(log(n)) O(log(n ∗ m)) O(log(n) + log(k)) O(log(n) + log(l))

Multiple Indices No No Yes Yes

Query Expressiveness Star Star Graph Tree

Full-Text Yes Yes (on literals) No Yes (on literals)

Multi-Valued Support Yes No Yes No

Context Partial Partial Yes Partial

Precision (false positive) No Yes No Yes

Table 3: Summary of comparison among the four entity
retrieval systems

In the following, we assume that term dictionaries as
well as quad tables are implemented on top of a b+-tree
data structure for fast record lookups. The comparison
is performed according to the following criteria: Pro-
cessing Complexity, Update Complexity, Query Expres-
siveness and Precision. Processing Complexity evalu-
ates the theoretical complexity for processing a query
(lookups, joins, etc.). Update Complexity evaluates
the theoretical complexity of maintenance operations.
Query Expressiveness indicates the type of queries sup-
ported. Precision evaluates if the system returns any
false answers in the query result set.

4.4.1. Processing Complexity
Since the field-based index encodes the relation be-

tween an attribute and a value term in the dictionary, its
dictionary may quickly become large when dealing with
heterogeneous data. A dictionary lookup has a com-
plexity of O(log(n ∗m)) where n is the number of terms
and m the number of attributes. This overhead can have
a significant impact on the query processing time. In
contrast, the other systems has a term dictionary of size
n and thus a dictionary lookup complexity of O(log(n)).

To lookup a quad or triple pattern, the complexity of
the node and field index is equal to the complexity of
looking up a few terms in the dictionary. In contrast,
RDF databases have to perform an additional lookup on
the quad table. The complexity is O(log(n)+log(k)) with
log(n) the complexity to lookup a term in the dictionary
and log(k) the complexity to lookup a quad in a quad ta-
ble, with k being the number of quads in the database. In
general, it is expected to have considerably more quads
than terms, with k generally much larger than n. There-
fore, the quad table lookup has a substantial impact on
the query processing time for very large data collection.

For quad patterns containing two or more terms, for
example (?c,?s,p,o), the node index has to perform a
merge-join between the posting lists of the two terms

in order to check their relationships. However, this kind
of join can be performed on average in sub-linear time.
On the contrary, the other indexes do not have to per-
form such a join, since the field index encodes the rela-
tionship between predicate and object in the dictionary,
the quad table in the b+-tree and Semplore in the in-
verted list for each term occurrence (but only for URI
terms and not literal terms). Furthermore, in Semplore,
access patterns where the predicate is not specified trig-
ger a full index scan which is highly inefficient.

For evaluating a star-shaped query (joining multiples
quad patterns), each index has to perform a join between
the results of all the patterns. Such a join is linear with
the number of results in the case of the quad table, and
sub-linear in average for the node and field index with
the use of the self-indexing method [59]. In contrast,
Semplore has often to resort to possibly expensive ex-
ternal sort before merge-join operations.

4.4.2. Update Complexity
In a b+-tree system the cost of insertion of one quad

represents the cost of searching the related leaf node,
i.e., O(log(n) + log(k)), the cost of adding a leaf node if
there is no available leaf node and the cost of rebalanc-
ing the tree. These costs become problematic with large
indices and requires advanced optimizations [61] that
in return cause a degradation in query performance. In
contrast, the cost of insertion for a node and field index
is equal to the cost of a dictionary lookup as discussed in
Section 4.3.2, which is O(log(n)) and O(log(n ∗ m)) for
the node index and the field index respectively. Further-
more, quad tables are specific to access patterns. Hence
multiple b+-tree indexes, one for each access pattern,
have to be maintained which limits effective caching.
Concerning the size of the indexes, all of them are lin-
ear with the data.

Concerning Semplore, the original system could not
perform updates or deletions of triples without full re-
indexing. The authors have recently [37] proposed an
extension for incremental maintenance operations based
on the landmark [62] technique but the update complex-
ity remains sustained. The update cost is O(log(n) +

log(l)) with l the number of landmarks in the inverted
list. The fact that Semplore uses multiple indexes and
landmarks considerably increase the update complex-
ity. For example, index size and creation time reported
in [37] are higher than for the state-of-the-art RDF
database RDF-3X [30].

4.4.3. Query Expressiveness
In terms of query expressiveness, RDF databases

have been designed to answer complex graph-shaped

14



queries which are a superset of the queries supported
by the other systems. On the other hand, the other sys-
tems are especially designed to support natively full-
text search which is not the case for quad table indexes.
Compared to field index and Semplore, the node index
provides more flexibility since it enables to keyword
search on every parts of a quad. In addition, node in-
dexes support set operations on every nodes, giving the
ability to express queries over multi-valued attributes.
For example, a field-based index and Semplore cannot
process Query Q1 from Appendix A without potentially
returning false-positive results.

While Semplore supports relational, tree shaped,
queries, it does not index relations between a resource
and a literal. Hence, it is not possible to restrict full-text
search of a literal using a predicate, e.g., queries such as
(?s, <foaf:name>, "renaud").

The node indexing scheme, field-based indexing
scheme and Semplore only support dataset queries par-
tially. The three systems are using an identical tech-
nique that consists of encoding the relation between
dataset terms with the entity identifiers as explained in
Section 4.3. This approach makes difficult the process-
ing of the dataset query Q5.

4.4.4. Precision
The field indexing scheme encodes the relation be-

tween an attribute and and a value term in the index dic-
tionary, but loses an important structural information:
the distinction between multiple values. As a conse-
quence, the field index may return false-positive results
for Query Q1. Semplore suffers from a similar problem:
it aggregates all the values of an entity, disregarding the
attribute, into a single bag of words. On the contrary,
the node index and the quad table are able to distinguish
distinct values and do not produce wrong answers.

4.5. Conclusion on Node-Based Indexing
We presented SIREn, a node-based indexing scheme

for semi-structured data. SIREn is designed for index-
ing very large datasets and handling the requirements
of indexing and querying Web Data: constant time in-
cremental updates and very efficient entity lookup using
semi-structural queries with full text search capabilities.
With respect to DBMS and IR systems, SIREn posi-
tions itself somewhere in the middle as it allows semi-
structural queries while retaining many desirable IR fea-
tures: single inverted index, effective caching, top-k
queries and efficient distribution of processing across
index shards4.

4An index shard is a particular subset of the entire index.

We have described its model and implementation and
have shown how it supports the entity retrieval model
from Section 3. We have also compared its theoreti-
cal performance with other entity retrieval systems, and
shown that the node-based indexing scheme offers a
good compromise between query expressiveness, query
processing and index maintenance compared to other
approaches. In the next section, we show how to consid-
erably improve the overall performance of the system by
developing a high-performance compression technique
which is particularly effective with respect to the node-
based inverted index.

5. High-Performance Compression for Node Index-
ing Scheme

Inverted lists represent an important proportion of the
total index size and are generally kept on disk. It is
desirable to use compression techniques in order to re-
duce disk space usage and transfer overhead. On the
one hand, efficient decompression can provide faster
transfer of data from disk to memory, and therefore
faster processing, since the time of fetching and decom-
pressing a data segment is less than fetching an uncom-
pressed form [63]. On the other hand, efficient com-
pression can provide faster indexing since the time of
compressing and writing a data segment is less than the
time to write an uncompressed form. To summarise,
compression is useful for saving disk space, but also to
maximise IO throughput and therefore to increase the
update and query throughput.

In the past years, compression techniques have fo-
cussed on CPU optimised compression algorithms [64,
65, 66, 67]. It has been shown in [65, 66, 67] that the
decompression performance depends on the complexity
of the execution flow of the algorithm. Algorithms that
require branching conditions tend to be slower than al-
gorithms optimised to avoid branching conditions. In
fact, simplicity over complexity in compression algo-
rithms is a key for achieving high performance. The
challenge is however to obtain a high compression rate
while keeping the execution flow simple.

Previous works [65, 68, 66, 69, 70, 67] have focussed
solely on two factors, the compression ratio and the
decompression performance, disregarding the compres-
sion performance. While decompression performance
is essential for query throughput, compression perfor-
mance is crucial for update throughput. We therefore
propose to study compression techniques with an addi-
tional third factor, the compression performance. We
show that compression performance is also dependent
on an optimised execution flow.

15



In this section, we introduce a high-performance
compression technique, the Adaptive Frame of Ref-
erence (AFOR), which provides considerable benefits
with respect to the node-indexing scheme presented in
the previous section. We compare our approach against
a number of state-of-the-art compression techniques for
inverted indexes. We perform an experimental evalua-
tion based on three factors: indexing time, compression
ratio and query processing time. We show that AFOR
can achieves significant performance improvements on
the indexing time and compression ratio while main-
taining one of the fastest query processing time.

5.1. Background

In this section, we first introduce the block-based data
structure of an inverted list which is the backbone of the
compression mechanism. We then recall the delta en-
coding technique for inverted lists which is commonly
employed before compression. Finally, we describe five
compression algorithms selected for the experiments
and discuss their implementation.

5.1.1. Block-Based Inverted List
We now describe the implementation of an inverted

file on disk. For performance and compression effi-
ciency, it is best to store separately each data stream of
an inverted list [71]. In a non-interleaved index organ-
isation, the inverted index is composed of five inverted
files, one for each inverted lists. Each inverted file stores
contiguously one type of list, and five pointers are asso-
ciated to each term in the lexicon, one pointer to the
beginning of the inverted list in each inverted file.

An inverted file is partitioned into blocks, each block
containing a fixed number of integers as shown in Fig-
ure 8. Blocks are the basic units for writing data to
and fetching data from disk, but also the basic data unit
that will be compressed and decompressed. A block
starts with a block header. The block header is com-
posed of the length of the block in bytes and additional
metadata information that is specific to the compres-
sion technique used. Long inverted lists are often stored
across multiple blocks, starting somewhere in one block
and ending somewhere in another block, while multiple
small lists are often stored into a single block. For ex-
ample, 16 inverted lists of 64 integers can be stored in a
block of 1024 integers. We use blocks of 1024 integers
in our experiments, since this was providing the best
performance with respect to the CPU cache. The per-
formance of all the compression techniques decreased
with smaller block sizes.

Figure 8: Inverted index structure. Each lexicon entry
(term) contains a pointer to the beginning of its inverted
list in the compressed inverted file. An inverted file is
divided into blocks of equal size, each block containing
the same number of values.

5.1.2. Delta Encoding of Inverted Lists
A more compact representation for node-based in-

dex structure is to represent node labels as delta val-
ues, a technique first introduced in [72]. The key idea
of the delta compression is to store the difference be-
tween consecutive values instead of the values them-
selves. This allows to encode an ordered list of integers
using much smaller integers, which theoretically can be
encoded in less bits. In a node-based indexing scheme,
the delta values are much smaller than those obtained
in a document-based indexing. This is due (1) to the
usually more verbose and repetitive nature of structured
data, e.g., the same URI used multiple times, and (2) to
the locality of the attribute identifiers, the value iden-
tifiers and the term positions. Compression techniques
are then used to encode the delta values with the small-
est number of bits possible.

5.1.3. Algorithms for Compressing Inverted Lists
Binary Interpolative Coding [73] has been shown

to provide a very good compression rate and it could
have been a reference for comparing compression rates.
However, it is very inefficient in decoding, and we found
that Rice is competitive enough in terms of compression
rate to use it as a reference.

Rice Coding. In Rice [74], an integer n is encoded in
two parts: a quotient q = b n

2b c and a remainder r =

n mod 2b. The quotient is stored in unary format using
q + 1 bits while the remainder is stored in binary format
using b bits. In our implementation, the parameter b
is chosen per block such that 2b is close to the average
value of the block.

The main advantage of Rice is its very good compres-
sion ratio. However, it is in general the slowest method
in terms of compression and decompression. The main
reason is that Rice needs to manipulate the unary word
one bit at a time during both compression and decom-
pression, which is costly in CPU cycles.

16



Variable Byte Coding (VByte). Variable Byte compres-
sion encodes an integer with a variable number of bytes.
VByte is byte-aligned, i.e., coding and decoding is done
one byte at a time. Each byte consists of 7 bits to encode
the partial binary representation of the integer, and one
bit used as status flag to indicate if the following byte is
part of the current number.

The advantages of VByte are: (1) it is simple to im-
plement; and (2) its overall compression and decom-
pression performance are good. Compared to bitwise
techniques like Rice, VByte requires a single branch-
ing condition for each byte which is more CPU cost-
effective. However, the branching condition leads to
branch mispredictions which makes it slower than CPU
optimised techniques such as the one presented next.
Moreover, VByte has a poor compression ratio since it
requires one full byte to encode one small integer (i.e.,
∀n|n < 27).

Simple Coding Family. The idea behind the Simple
coding is to pack as many integers as possible into one
machine word (being 32 or 64 bits). We describe one
Simple coding method (referred to as S-64 in our ex-
periments) based on 64-bit machine words, recently in-
troduced in [67]. In our experiments, we report only
S-64 results since its performance was always superior
to Simple9 [65]. In S-64, each word consists of 4 status
bits and 60 data bits. The 4 status bits are used to encode
one of the 16 possible configurations for the data bits.
A description of the 16 configurations can be found in
[67]. S-64 wastes generally less bits than Simple9 and
therefore provides a better compression ratio.

In addition to providing good compression ratio, de-
compression is done efficiently by reading one machine
word at a time and by using a precomputed lookup table
over the status bits in order to select an optimised rou-
tine (one routine per configuration) to decode the data
bits using shift and mask operations only. However, one
disadvantage is that compression cannot be done effi-
ciently. The typical implementation is to use a sliding
window over the stream of integers and to find the best
configuration, i.e., the one providing the best compres-
sion ratio, for the current window. This generally re-
quires repetitive try and error iterations over the possi-
ble configurations for each new window. In addition,
Simple coding has to perform one table lookup per ma-
chine word and consumes more CPU cycles than the
techniques presented next.

Frame of Reference (FOR). FOR determines the range
of possible values in a block, called a frame, and maps
each value into this range by storing just enough bits

to distinguish between the values [64]. Given a frame
[min,max], FOR needs dlog2(max − min + 1)e bits, that
we call bit frame in the rest of the paper, to encode each
integer in a block. In the case of the delta-encoded list
of values, since the probability distribution generated by
taking the delta tends to be naturally monotonically de-
creasing, one common practice [66, 67] is to choose as
frame the range [0,max] where max is the largest num-
ber in the group of delta values.5

The main disadvantage of FOR is that it is sensitive
to outliers in the group of values. For example, if a
block of 1024 integers contains 1023 integers inferior
to 16, and one value superior to 128, then the bit frame
will be dlog2(128 + 1)e = 8, wasting 4 bits for each
other values. However, compression and decompres-
sion is done very efficiently using highly-optimised rou-
tines [66] which avoid branching conditions. Each rou-
tine is loop-unrolled to encode or decode m values using
shift and mask operations only. Listing 1 and 2 show the
routines to encode or decode 8 integers with a bit frame
of 3. There is a compression and decompression routine
for each bit frame.

Given a block of n integers, FOR determines a frame
of reference for the block and encodes the block by
small iterations of m integers using the same compres-
sion routine at each iteration. Usually, and for questions
of performance, m is chosen to be a multiple of 8 so that
the routines match byte boundaries. In our implemen-
tation, FOR relies on routines to encode and decode 32
values at a time.

The selection of the appropriate routine for a given bit
frame is done using a precomputed lookup table. The
compression step performs one pass only over the block
to determine the bit frame. Then, it selects the routine
associated to the bit frame using the lookup table. Fi-
nally, the bit frame is stored using one byte in the block
header and the compression routine is executed to en-
code the block. During decompression, FOR reads the
bit frame, performs one table lookup to select the de-
compression routine and executes iteratively the routine
over the compressed block.

Patched Frame Of Reference (PFOR). PFOR [66] is an
extension of FOR that is less vulnerable to outliers in
the value distribution. PFOR stores outliers as excep-
tions such that the frame of reference [0,max] is greatly
reduced. PFOR first determines the smallest max value

5This assumes that a group of values will always contain 0, which
is not always the case. However, we found that taking the real range
[min,max] was only reducing the index size by 0.007% while increas-
ing the complexity of the algorithm.

17



encode3(int[] i, byte[] b)
b[0] = (i[0] & 7)

| ((i[1] & 7) << 3)
| ((i[2] & 3) << 6);

b[1] = ((i[2] >> 2) & 1)
| ((i[3] & 7) << 1)
| ((i[4] & 7) << 4)
| ((i[5] & 1) << 7);

b[2] = ((i[5] >> 1) & 3)
| ((i[6] & 7) << 2)
| ((i[7] & 7) << 5);

Listing 1: Loop unrolled
compression routine that
encodes 8 integers using 3
bits each

decode3(byte[] b, int[] i)
i[0] = (b[0] & 7);
i[1] = (b[0] >> 3) & 7;
i[2] = ((b[1] & 1) << 2)

| (b[0] >> 6);
i[3] = (b[1] >> 1) & 7;
i[4] = (b[1] >> 4) & 7;
i[5] = ((b[2] & 3) << 1)

| (b[1] >> 7);
i[6] = (b[2] >> 2) & 7;
i[7] = (b[2] >> 5) & 7;

Listing 2: Loop unrolled
decompression routine
that decodes 8 integers
represented by 3 bits each

such that the best compression ratio is achieved based
on an estimated size of the frame and of the excep-
tions. Compressed blocks are divided in two: one sec-
tion where the values are stored using FOR, a second
section where the exceptions, i.e., all values superior to
max, are encoded using 8, 16 or 32 bits. The unused
slots of the exceptions in the first section are used to
store the offset of the next exceptions in order to keep
a linked list of exception offsets. In the case where
the unused slot is not large enough to store the offset
of the next exceptions, a compulsive exception [66] is
created. Instead, we use the non-compulsive approach
proposed in [70], where the exceptions are stored along
with their offset in the second block section, since it has
been shown to provide better performance. During our
experimentations, we tried PFOR with frames of 1024,
128 and 32 values. With smaller frames, the compres-
sion rate was slightly better. However, the query time
performance was decreasing. We therefore decided to
use PFOR with frames of 1024 values as it was provid-
ing a good reference for query time.

The decompression is performed efficiently in two
phases. First, the list of values are decoded using the
FOR routines. Then, the list of values is patched by:
(1) decompressing the exceptions and their offsets and
(2) replacing in the list the exception values. How-
ever, the compression phase cannot be efficiently im-
plemented. The main reason is that PFOR requires a
complex heuristic that require multiple passes over the
values of a block in order to find the frame and the set
of exceptions providing the highest compression.

Vector of Split Encoding. At the time of the writing,
we discovered the Vector of Split Encoding (VSE) [75]
which is similar to AFOR. The two methods can be con-
sidered as an extension of FOR which are less sensitive
to outliers by adapting their encoding to the value distri-

bution. To achieve this, the two methods are encoding
a list of values by partitioning it into frames of variable
lengths and rely on algorithms to automatically find the
list partitioning. AFOR relies on a local optimisation
algorithm for partitioning a list, while VSE adds a Dy-
namic Programming method to find the optimal parti-
tioning of a list.

For the purpose of our comparison, we use AFOR
to show how adaptive techniques can be peculiarly ef-
fective with respect to node-based indexes. Given its
almost identical nature, we can expect the results to be
very close to those of a VSE implementation.

5.2. Adaptive Frame of Reference

Adaptive Frame Of Reference (AFOR) attempts to
retain the best of FOR, i.e., a very efficient compres-
sion and decompression using highly-optimised rou-
tines, while providing a better tolerance against out-
liers and therefore achieving a higher compression ratio.
Compared to PFOR, AFOR does not rely on the encod-
ing of exceptions in the presence of outliers. Instead,
AFOR partitions a block into multiple frames of vari-
able length, the partition and the length of the frames
being chosen appropriately in order to adapt the encod-
ing to the value distribution.

To elaborate, AFOR works as follow. Given a block B
of n integers, AFOR partitions it into m distinct frames
and encodes each frame using highly-optimised rou-
tines. Each frame is independent from each other, i.e.,
each one has its own bit frame, and each one encodes a
variable number of values. This is depicted in Figure 9
by AFOR-2. Along with each frame, AFOR encodes
the associated bit frame with respect to a given encoder,
e.g., a binary encoder. In fact, AFOR encodes (resp.,
decodes) a block of values by:

1. encoding (resp., decoding) the bit frame;
2. selecting the compression (resp., decompression)

routine associated to the bit frame;
3. encoding (resp., decoding) the frame using the se-

lected routine.

Finding the right partitioning, i.e., the optimal config-
uration of frames and frame lengths per block, is essen-
tial for achieving high compression ratio [75]. If a frame
is too large, the encoding becomes more sensitive to out-
liers and wastes bits by using an inappropriate bit frame
for all the other integers. On the contrary, if the frames
are too small, the encoding wastes too much space due
to the overhead of storing a larger number of bit frames.
Also, alternating between large and small frames is not
only important for achieving high compression ratio but

18



Figure 9: Comparison of block compression between
FOR and AFOR. We alternate colours to differenti-
ate frames. AFOR-1 denotes a first implementation of
AFOR using a fixed frame length. AFOR-2 denotes a
second implementation of AFOR using variable frame
lengths. AFOR-3 denotes a third implementation us-
ing variable frame lengths and the frame stripping tech-
nique. BFS denotes the byte storing the bit frame selec-
tor associated to the next frame.

also for achieving high performance. If frames are too
small, the system has to perform more table lookups to
select the appropriate routine associated to each frame,
and as a consequence the compression and decompres-
sion performance decrease. The appropriate strategy is
to rely on large frames in the presence of a dense se-
quence of values, and on small frames in the presence of
sparse sequence of values. To find a block partitioning,
our solution uses a local optimisation algorithm which
is explained next.

5.2.1. Partitioning Blocks into Variable Frames
Finding the optimal configuration of frames and

frame lengths for a block of values is a combinato-
rial problem. For example, with three different frame
lengths (32, 16 and 8) and a block of size 1024, there
are 1.18 × 1030 possible combinations. While such a
combinatorial problem can be solved via Dynamic Pro-
gramming algorithms [75], the complexity of such algo-
rithms is still O(n×k), with the term n being the number
of integers and the term k the size of the larger frame,
and therefore greatly impacts the compression perfor-
mance. We remind the reader that we are interested not
only by fast decompression speed and high compression
ratio, but also by fast compression speed. Therefore, in
our experiments, we do not rely on the optimal config-
uration. Instead, we use a local optimisation algorithm
that provides a satisfactory compression rate and that is
efficient to compute.

AFOR computes the block partitioning by using a
sliding window over a block and determines the opti-
mal configuration of frames and frame lengths for the
current window. Given a window of size w and a list
of possible frame lengths, we compute beforehand the
possible configurations. For example, for a window size
of 32 and three different frame lengths, 32, 16 and 8,
there are six configurations: [32], [16, 16], [16, 8, 8],

[8, 16, 8], [8, 8, 16], [8, 8, 8, 8]. The size of the window
as well as the number of possible frame lengths are gen-
erally chosen to be small in order to reduce the num-
ber of possible configurations. Then, we first compute
the bit frames of the smallest frames by doing one pass
over the values of the window as shown in the Algo-
rithm 1 (lines 1-5). On the previous example, this means
that we compute the bit frames for the configuration
[8, 8, 8, 8]. The bitFrames array stores the bit frame
for each of frame of this configuration. Given these bit
frames, we are able to compute the bit frames of all
the other frames. The second step, lines 6-12 in Al-
gorithm 1, iterates over the possible configurations and
estimates the size of each configuration in order to find
the optimal one for the current window. Given the previ-
ously computed bitFrames array, the EstimateSize

function computes the cost of encoding the window for
a given configuration, accounting also the overhead of
storing the bit frames. For example, for the configura-
tion [8, 8, 8, 8] with four frames of size 8 each, and with
four associated bit frames, b1 to b4, the size of the en-
coding is computed as follow: (4 × 8) + 8 ×

∑
i=1...4 bi,

where 8 ×
∑

i=1...4 bi is the size (in bits) of the four en-
coded frames and 4 × 8 is the overhead (in bits) to store
the four bit frames.

This simple algorithm is efficient to compute, in par-
ticular if the window size is small and if there is a few
number of possible frame lengths. However, it is easy
to see that such a method does not provide the optimal
configuration for a complete block. There is a trade-off

between optimal partitioning and complexity of the al-
gorithm. One can possibly use a more complex method
for achieving a higher compression if the compression
speed is not critical. However, this is not the case for a
web search engine where high update throughput is cru-
cial. We decided to use this method since in our exper-
iments we found that a small window size of 32 values
and three frame lengths, 32, 16 and 8, were providing
satisfactory results in terms of compression speed and
compression ratio. More details about our implementa-
tions of AFOR are given next.

5.2.2. Frame Stripping
In an inverted list, it is common to encounter a long

sequence of 1 to encode. For example, this occurs with
terms that appear frequently in many entities. With RDF
data, such a very common term might be a predicate
URI or a ubiquitous class URI. As a consequence, the
list of entity identifiers is composed of many consec-
utive identifiers, which is encoded as a list of 1 using
the delta representation. Also, the schema used across
the entity descriptions coming from a same dataset is

19



Algorithm 1: The algorithm that finds the best
configuration of frames and frame lengths for a
window W of size w.

input : A window W of size w
input : The smallest frame length l
output: The best configuration for the window

1 for i← 0 to w
l do

2 for j← i × l to (i + 1) × l do
3 bitFrames[i]

← max(bitFrames[i], dlog2(W[ j] + 1)e);
4 end
5 end
6 bestSize← MaxS ize;
7 foreach configuration c of the possible configurations

do
8 if EstimateSize(c, bitFrames) < bestSize then
9 bestSize← EstimateSize(c);

10 bestConf← c;
11 end
12 end

generally similar. When indexing batch of entities com-
ing from a same dataset, we benefit from a “term clus-
tering” effect: all the schema terms are associated with
long runs of consecutive entity identifiers in the inverted
index. There is also other cases where a long run of 1 is
common, for example in:

• the list of term frequencies for terms that appear
frequently a single time in the entity description,
e.g., class URIs;

• the list of value identifiers for terms that appear fre-
quently in single-valued attributes;

• the list of term positions for nodes holding a single
term, e.g., URIs.

In presence of such long runs of 1, AFOR still needs
to encode each value using 1 bit. For example, a frame
of 32 values will encode a sequence of 1 using 32 bits.
The goal of the Frame Stripping method is to avoid the
encoding of such frames. Our solution is to strip the
content of a frame if and only if the frame is exclusively
composed of 1. We encode such a case using a special
bit frame.

5.2.3. Implementation
We present three different implementations of the

AFOR encoder class. We can obtain many variations
of AFOR by using various sets of frame lengths and
different parameters for the partitioning algorithm. We
tried many of them during our experimentation and re-

port here only the ones that are promising and interest-
ing to compare.

AFOR-1. The first implementation of AFOR, referred
to as AFOR-1 and depicted in Figure 9, is using a sin-
gle frame length of 32 values. To clarify, this approach
is identical to FOR applied on small blocks of 32 in-
tegers. This first implementation shows the benefits of
using short frames instead of long frames of 1024 val-
ues as in our original FOR implementation. In addi-
tion, AFOR-1 is used to compare and judge the benefits
provided by AFOR-2, the second implementation using
variable frame lengths. Considering that, with a fixed
frame length, a block is always partitioned in the same
manner, AFOR-1 does not rely on the partitioning algo-
rithm presented previously.

AFOR-2. The second implementation, referred to as
AFOR-2 and depicted in Figure 9, relies on three
frame lengths: 32, 16 and 8. We found that these
three frame lengths give the best balance between per-
formance and compression ratio. Additional frame
lengths were rarely selected and the performance de-
creased due to the larger number of partitioning con-
figurations to compute. Reducing the number of pos-
sible frame lengths was providing slightly better per-
formance but slightly worse compression ratio. There
is a trade-off between performance and compression
effectiveness when choosing the right set of frame
lengths. Our implementation relies on the parti-
tioning algorithm presented earlier, using a window
size of 32 values and six partitioning configurations
[32], [16, 16], [16, 8, 8], [8, 16, 8], [8, 8, 16], [8, 8, 8, 8].

AFOR-3. The third implementation, referred to as
AFOR-3 and depicted in Figure 9, is identical to AFOR-
2 but employs the frame stripping technique. Compared
to AFOR-2, the compressed block can contain frames
encoded by a single bit frame as depicted in Figure 9.
AFOR-3 implementation relies on the same partition-
ing algorithm as AFOR-2 with an additional step to find
and strip frames composed of a sequence of 1 in the par-
titions.

Compression and decompression routines. Our imple-
mentations rely on highly-optimised routines such as
the ones presented in Listing 1 and 2, where each rou-
tine is loop-unrolled to encode or decode a fixed number
of values using shift and mask operations only. There
is one routine per bit frame and per frame length. For
example, for a frame length of 8 values, the routine en-
codes 8 values using 3 bits each as shown in Listing 1,

20



while for a frame length of 32, the routine encodes 32
values using 3 bits each.

Since AFOR-1 uses a single frame length, it only
needs 32 routines for compression and 32 routines for
decompression, i.e., one routine per bit frame (1 to 32).
With respect to AFOR-2, since it relies on three different
frame lengths, it needs 96 routines for compression and
96 routines for decompression. With respect to AFOR-
3, one additional routine for handling a sequence of 1
is added per frame length. The associated compression
routine is empty and does nothing since the content of
the frame is not encoded. Therefore the cost is reduced
to a single function call. The decompression routine
consists of returning an array of 1. Such routines are
very fast to execute since there are no shift or mask op-
erations.

Bit frame encoding. Recall that the bit frame is encoded
along with the frame, so that, at decompression time, the
decoder can read the bit frame and select the appropriate
routine to decode the frame. In the case of AFOR-1, the
bit frame varies between 1 to 32. For AFOR-2, there are
96 cases to be encoded, where cases 1 to 32 refer to the
bit frames for a frame length of 8, cases 33 to 63 for a
frame length of 16, and cases 64 to 96 for a frame length
of 32. In AFOR-3, we encode one additional case per
frame length with respect to the frame stripping method.
Therefore, there is a total of 99 cases to be encoded. The
cases 97 to 99 refer to a sequence of 1 for a frame length
of 8, 16 and 32 respectively.

In our implementation, the bit frame is encoded us-
ing one byte. While this approach wastes some bits
each time a bit frame is stored, more precisely 3 bits
for AFOR-1 and 1 bits for AFOR-2 and AFOR-3, the
choice is again for a question of efficiency. Since bit
frames and frames are interleaved in the block, storing
the bit frame using one full byte enables the frame to
be aligned with the start and end of a byte boundary.
Another implementation to avoid wasting bits is to pack
all the bit frames at the end of the block. We tried this
approach and report that it provides slightly better com-
pression ratio, but slightly worse performance. Since
the interleaved approach was providing better perfor-
mance, we decided to use it in our experiment.

Routine selection. A precomputed lookup table is used
by the encoder and decoder to quickly select the appro-
priate routine given a bit frame. Compared to AFOR-
1, AFOR-2 and AFOR-3 have to perform more table
lookups for selecting routines since they are likely to
rely on small frames of 8 or 16 values when the value

distribution is sparse. While these lookups cost addi-
tional CPU cycles, we will see in the experiments that
the overhead is minimal.

5.3. Experiments

This section describes the benchmark experiments
which aim to compare the techniques introduced by
AFOR with the compression methods described in Sec-
tion 5.1.3. The first experiment measures the index-
ing performance based on two aspects: (1) the index-
ing time; and (2) the index size. The second experiment
compares the query execution performance.

Experimental Settings. The hardware system we use in
our experiments is a 2 x Opteron 250 @ 2.4 GHz (2
cores, 1024 KB of cache size each) with 4GB memory
and a local 7200 RPM SATA disk. The operating sys-
tem is a 64-bit Linux 2.6.31-20-server. The version of
the Java Virtual Machine (JVM) used during our bench-
marks is 1.6.0 20. The compression algorithms and the
benchmark platform are written in Java and based on the
open-source project Apache Lucene6.

Experimental Design. Each measurement was made by
(1) flushing the OS cache; (2) initialising a new JVM
and (3) warming the JVM by executing a certain num-
ber of times the benchmark. The JVM warmup is nec-
essary in order to be sure that the OS and the JVM have
reached a steady state of performance, e.g., that the crit-
ical portion of code is JIT compiled by the JVM. The
implementation of our benchmark platform is based on
the technical advice from [76], where more details about
the technical aspects can be found.

Data Collection. We use three real web datasets for our
comparison:

Geonames: a geographical database and contains 13.8
million of entities7. The size is 1.8GB compressed.

DBPedia: a semi-structured version of Wikipedia and
contains 17.7 million of entities8. The size is
1.5GB compressed.

Sindice: a sample of the data collection currently in-
dexed by Sindice. There is a total of 130,540,675
entities. The size is 6.9GB compressed.

We extracted the entity descriptions from each dataset
as pictured in Figure 3.

6Apache Lucene: http://lucene.apache.org/
7Geonames: http://www.geonames.org/
8DBpedia: http://dbpedia.org/

21



AFOR-1

AFOR-2

AFOR-3
FOR

PFOR
Rice S-64

VByte

540

560

580

600

T
im

e
(s

)

DBpedia

AFOR-1

AFOR-2

AFOR-3
FOR

PFOR
Rice S-64

VByte

720

740

760

780

Geonames

AFOR-1

AFOR-2

AFOR-3
FOR

PFOR
Rice S-64

VByte
1.3

1.35

1.4

1.45

1.5

1.55

·104 Sindice

Figure 10: The total time spent to commit batches of
10000 document.

5.3.1. Indexing Performance
The performance of indexing is compared based on

the index size (compression ratio), commit time (com-
pression speed) and optimise time (compression and
decompression speed). The indexing is performed by
adding incrementally 10000 documents at a time (which
is similar to what others have done [77]) and finally by
optimising the index. For each batch of documents, the
commit operation creates a small inverted index (called
an index segment). The optimisation merges all the in-
dex segments into a single segment. We believe this to
be a common operation for incremental inverted index.

We report the results of the indexing experiments in
Table C.5. The table comprises two columns with re-
spect to the indexing time: the total commit time (To-
tal) to add all the documents and the optimisation time
(Opt). The time collected is the CPU time used by the
current thread and comprises the user time and the sys-
tem time. The index size in Table C.5 is studied based
on the size of the individual inverted file (entity, fre-
quency, attribute, value and position) and on the total in-
dex size (by summing the size of the five inverted files).
We also provide bar plots to visualise better the differ-
ences between the techniques.

Commit Time. Figure 10 shows the total time spent by
each method. As might be expected, Rice is the slow-
est method due to its execution flow complexity. It is
followed by FOR and PFOR. We can notice the inef-
ficiency of PFOR in terms of compression speed. On
a large dataset (Sindice), VByte is the best-performing
method while AFOR-1, AFOR-2, AFOR-3 and S-64
provide a similar commit time. On DBpedia, AFOR-
1 and AFOR-2 are the best performing methods. On
Geonames, AFOR-1, AFOR-2 and AFOR-3 are the best
performing methods, while S-64 and VByte perform
similarly. On smaller datasets (DBpedia and Geon-
ames), VByte, FOR and PFOR perform similarly.

Optimisation Time. Figure 11 shows the optimise time
for each methods. The time to perform the optimisa-

AFOR-1

AFOR-2

AFOR-3
FOR

PFOR
Rice S-64

VByte

140

160

180

200

220

240

T
im

e
(s

)

DBpedia

AFOR-1

AFOR-2

AFOR-3
FOR

PFOR
Rice S-64

VByte

100

120

140

160

180

Geonames

AFOR-1

AFOR-2

AFOR-3
FOR

PFOR
Rice S-64

VByte
1,500

2,000

2,500

3,000

Sindice

Figure 11: The total time spent to optimise the complete
index.

tion step is quite different due to the nature of the opera-
tion. The optimisation operation has to read and decom-
press all the index segments and compress them back
into a single segment. Therefore, decompression perfor-
mance is also an important factor, and algorithms hav-
ing good decompression speed becomes more competi-
tive. For example, while FOR and PFOR was perform-
ing similarly to Rice in terms of indexing time on the
Sindice dataset, it is ahead of Rice in terms of optimi-
sation time. Rice is penalised by its low decompression
speed. Similarly, S-64 provides close or even better op-
timisation performance than VByte due to its faster de-
compression. On smaller datasets (DBpedia and Geon-
ames), VByte is performing well due to its good com-
pression and decompression speed. However, we can
notice on a large dataset (Sindice) the compression ra-
tio and the decompression speed of VByte incur a large
overhead. The best-performing methods are AFOR-1,
AFOR-2 and AFOR-3, with AFOR-3 performing better
on large datasets. The AFOR techniques take the advan-
tage due their optimised compression and decompres-
sion routines and their good compression rate. AFOR-3
is even twice as fast as Rice on the Sindice dataset.

Compression Ratio. Figure 12 shows the total in-
dex size achieved by each method. We can clearly
see the inefficiency of the VByte approach. While
VByte performs generally better than FOR on tradi-
tional document-centric inverted indexes, this is not true
for inverted indexes based on a node indexing scheme.
VByte is not adapted to such an index due to the proper-
ties of the delta-encoded lists of values. Apart from the
entity file, the values are generally very small and the
outliers are rare. In that case, VByte is penalized by its
inability of encoding a small integer in less than a byte.
On the contrary, FOR is able to encode many small in-
tegers in one byte. Also, while PFOR is less sensitive
to outliers than FOR, the gain of compression rate pro-
vided by PFOR is minimal since outliers are more rare
than in traditional inverted indexes. In contrast, AFOR
and S-64 are able to better adapt the encoding to the

22



AFOR-1

AFOR-2

AFOR-3
FOR

PFOR
Rice S-64

VByte

0.8

1

1.2

S
iz

e
(G

b)

DBpedia

AFOR-1

AFOR-2

AFOR-3
FOR

PFOR
Rice S-64

VByte
0.2

0.4

0.6

0.8

Geonames

AFOR-1

AFOR-2

AFOR-3
FOR

PFOR
Rice S-64

VByte

6

8

10

12

14

16
Sindice

Figure 12: The index size achieved by each compres-
sion technique.

value distribution and therefore provide a better com-
pression rate. AFOR is even able to provide better com-
pression ratio than Rice on the Geonames and Sindice
dataset. Compared to AFOR-2, we can observe in Ta-
ble C.5 that AFOR-3 provides better compression rate
on the frequency, value and position files, and slightly
better on the entity file. This result corroborates the ex-
istence of long runs of 1 in these files, as explained in
Section 5.2.2.

Conclusion on Indexing Performance. The indexing
experiment shows that the compression speed is also
an important factor to take into consideration when de-
signing a compression algorithm for an inverted index.
Without a good compression speed, the update through-
put of the index is limited. Also the experiment shows
that the optimisation operation is dependent of the de-
compression performance, and its execution time can
double without a good compression and decompression
speed. With respect to index optimisation, the compres-
sion ratio must also be taken into consideration. While
VByte provides in general correct commit times, we
can observe on a large dataset (Sindice) that its perfor-
mance during optimisation is limited by its poor com-
pression ratio. Overall, the method providing the best
balance between indexing time, optimise time and com-
pression ratio is AFOR. AFOR-1 provides fast compres-
sion speed and better compression ratio than FOR and
PFOR. AFOR-2 provides a notable additional gain in
compression ratio and optimise time but undergoes a
slight increase of indexing time. AFOR-3 provides an-
other additional gain in compression ratio while provid-
ing better compression speed than AFOR-2.

5.3.2. Query Processing Performance
We now compare the decompression performance

in real settings, where inverted indexes are answering
queries of various complexities. We focus on two main
classes of queries, the value and attribute queries, which
are the core elements of a star-shaped query. Among
these two classes, we identify types of keyword queries

which represent the common queries received by a web
search engine: conjunction, disjunction and phrase. Un-
der our model, these two classes of queries are the most
complex ones and therefore cover the other cases (e.g.,
selection of a dataset or entity name and of a value).

Query Generation. The queries are generated based on
the selectivity of the words composing them. The word
selectivity determines how many entities match a given
keyword. The words are grouped into three selectivity
ranges: high, medium and low. We differentiate also
two groups of words based on their position in the data
graph: attribute and value. We follow the technique
described in [78] to obtained the ranges of each word
group. We first order the words by their descending
frequency, and then take the first k words whose cu-
mulative frequency is 90% of all word occurrences as
high range. The medium range accounts for the next
10%, and the low range is composed of all the remain-
ing words. For the phrase queries, we follow a similar
technique. We first extract all the 2-gram and 3-gram9

from the data collection. We then compute their fre-
quency and sort them by descending frequency. We fi-
nally create the three ranges as explained above.

Value Queries Value queries are divided into three
types of keyword queries: conjunction, disjunction and
phrase queries. These queries are restricted to match
within one single value, similar to Query Q1. Therefore,
the processing of conjunction and disjunction queries
relies on the entity, frequency, attribute and value in-
verted files. Phrase queries rely on one additional in-
verted file, the position inverted file.

Conjunction and disjunction queries are generated by
taking random keywords from the high range group of
words. 2-AND and 2-OR (resp. 4-AND and 4-OR) de-
notes conjunction and disjunction queries with 2 ran-
dom keywords (resp. 4 random keywords). Similarly,
a phrase query is generated by taking random n-grams
from the high range group. 2-Phrase (resp. 3-Phrase)
denotes phrase queries with 2-gram (resp. 3-gram).
Benchmarks involving queries with words from low and
medium ranges are not reported here for questions of
space, but the performance results are comparable with
the ones presented here.

Attribute Queries An attribute query is generated
by associating one attribute keyword with one value
query. An attribute keyword is randomly chosen from

9A n-gram is n words that appear contiguously

23



the high range groups of attribute words. The associated
value query is obtained as explained previously. An at-
tribute query intersects the result of a value query with
an attribute keyword.

Query Benchmark Design. For each type of query, we
(1) generate a set of 200 random queries which is reused
for all the compression methods, and (2) perform 100
measurements. Each measurement is made by per-
forming n times the query execution of the 200 ran-
dom queries, with n chosen so that the runtime is long
enough to minimise the time precision error of the OS
and machine (which can be 1 to 10 milliseconds) to a
maximum of 1%. All measurements are made using
warm cache, i.e., the part of the index read during query
processing is fully loaded in memory. The measurement
time is the CPU time, i.e., user time and system time,
used by the current thread to process the 200 random
queries.

Query execution time is sensitive to external events
which can affect the final execution time recorded. For
instance, background system maintenance or interrup-
tions as well as cache misses or system exceptions can
occur and perturb the measurements. All these events
are unpredictable and must be treated as noise. There-
fore, we need to quantify the accuracy of our measure-
ments. As recommended in [79], we report the arith-
metic mean and the standard deviation of the 100 mea-
surements. The design of the value and attribute query
benchmarks includes three factors:

Algorithm having height levels: AFOR-1, AFOR-2,
AFOR-3, FOR, PFOR, Rice, S-64, and VByte;

Query having six levels: 2-AND, 2-OR, 4-AND, 4-
OR, 2-Phrase, and 3-Phrase; and

Dataset having three levels: DBpedia, Geonames and
Sindice.

Each condition of the design, e.g., AFOR-1 / 2-AND /

WIKIPEDIA, contains 100 separate measurements.

Query Benchmark Results. We report the results of the
query benchmarks in Table B.4a and Table B.4b for the
value and attribute queries respectively. Based on these
results, we derive multiple graphical charts to better vi-
sualise the differences between each algorithm. These
charts are then used to compare and discuss the perfor-
mances of each algorithm.

Figure 13 and Figure 14 report the sum of the av-
erage processing time of the boolean and phrase query
levels for the value and attribute queries respectively.
Figure 13a and Figure 14a depict the sum of the average

AFOR-1

AFOR-2

AFOR-3
FOR

PFOR
Rice S-64

VByte

0.2

0.3

0.4

0.5

T
im

e
(s

)

DBpedia Geonames Sindice

(a) Boolean Query

AFOR-1

AFOR-2

AFOR-3
FOR

PFOR
Rice S-64

VByte

0

1

2

3

4

T
im

e
(s

)

DBpedia Geonames Sindice

(b) Phrase Query

Figure 13: The sum of the average processing time of
the boolean query levels (2-AND, 2-OR, 4-AND, 4-OR)
for the value queries that is achieved by each compres-
sion technique.

processing time of the boolean query levels (2-AND, 2-
OR, 4-AND, 4-OR). Figure 13b and Figure 14b depict
the sum of the average processing time of the phrase
query level (2-Phrase, 3-Phrase). The query processing
time are obtained by summing up the average time of
each query from Table B.4a for the value queries and
Table B.4b for the attribute queries. For example, the
processing time of AFOR-1 on the DBpedia dataset in
Figure 13b is obtained by summing up the processing
times of the queries 2-Phrase (43.2 ms) and 3-Phrase
(32.6 ms) reported in Table B.4a.

Value Query In Figure 13, and in particular on the
Sindice dataset (large dataset), we can distinguish three
classes of algorithms: the techniques based on FOR, a
group composed of S-64 and VByte, and finally Rice.
The FOR group achieves relatively similar results, with
AFOR-2 slightly behind the others.

Rice has the worst performance for every query and
dataset, followed by VByte. However, Rice performs in
many cases twice as slow as VByte. In Figure 13a, S-
64 provides similar performance to VByte on boolean
queries but we can see in Figure 13b that it is faster than
VByte on phrase queries. However, S-64 stays behind
FOR, PFOR and AFOR in all the cases.

FOR, PFOR and AFOR have relatively similar per-
formances on all the boolean queries and all the
datasets. PFOR seems to provide generally slightly bet-
ter performance on the phrase queries but seems to be
slower on boolean queries.

Attribute Query In Figure 14, and in particular on
the Sindice dataset (large dataset), we can again distin-
guish the same three classes of algorithms. However,

24



AFOR-1

AFOR-2

AFOR-3
FOR

PFOR
Rice S-64

VByte

0.5

1

1.5

T
im

e
(s

)

DBpedia Geonames Sindice

(a) Boolean Query

AFOR-1

AFOR-2

AFOR-3
FOR

PFOR
Rice S-64

VByte

0

1

2

3

4

5

T
im

e
(s

)

DBpedia Geonames Sindice

(b) Phrase Query

Figure 14: The sum of the average processing time
of the phrase query levels (2-Phrase, 4-Phrase) for the
attribute queries that is achieved by each compression
technique.

the performance gap between S-64 and VByte becomes
larger.

Rice has again the worst performance for every query
and dataset. Compared to the performance on value
queries, we can see in Figure 14a that S-64 provides
similar performance to PFOR and AFOR-2 on boolean
queries. FOR and AFOR-3 seem to be the best per-
forming methods on boolean queries. With respect to
the phrase queries in Figure 14b, S-64 has better perfor-
mance than VByte. However, PFOR does not achieve
any more the best performance on phrase queries. In-
stead, it seems that AFOR-2 and FOR achieve a slightly
better processing time.

FOR, PFOR and AFOR have again relatively simi-
lar performances on all the queries and all the datasets.
AFOR-2 appears to be slower to some degree, while the
gap between AFOR-3 and PFOR becomes less percep-
tible.

5.3.3. Performance Trade-Off

We report in Figure 15 the trade-off between the total
query processing time and the compression ratio among
all the techniques on the Sindice dataset. The total query
time has been obtained by summing up the average time
of all the queries. The compression ratio is based on the
number of bytes read during query processing which are
reported in Table B.4a and Table B.4b.

We can distinctively see that the AFOR techniques
are close to Rice in terms of compression ratio, while
being relatively close to FOR and PFOR in terms of
query processing time. Compared to AFOR-1, AFOR-
2 achieves a better compression rate in exchange of a
slightly slower processing time. However, AFOR-3 ac-
complishes a better compression rate with a very close
processing time to AFOR-1.

2 2.5 3 3.5 4 4.5

100

120

140

160

180

Time (s)

B
yt

es
(M

B
)

AFOR-1
AFOR-2
AFOR-3

FOR
PFOR
Rice
S-64

VByte

(a) Value Query

2 3 4 5 6
100

150

200

250

Time (s)

B
yt

es
(M

B
)

AFOR-1
AFOR-2
AFOR-3

FOR
PFOR
Rice
S-64

VByte

(b) Attribute Query

Figure 15: A graphical comparison showing the trade-
off between querying time and compression ratio on the
Sindice dataset. The compression ratio is represented by
the number of bytes read during the query processing.

2 2.5 3 3.5 4 4.5

1.6

1.7

1.8

1.9
·104

Query T ime (s)

In
de

xi
ng

T
im

e
(s

)
AFOR-1 AFOR-2 AFOR-3

FOR PFOR Rice
S-64 VByte

(a) Value Query

2 3 4 5 6

1.6

1.7

1.8

1.9
·104

Query T ime (s)

In
de

xi
ng

T
im

e
(s

)

AFOR-1 AFOR-2 AFOR-3
FOR PFOR Rice
S-64 VByte

(b) Attribute Query

Figure 16: A graphical comparison of the compression
techniques showing the trade-off between querying time
and indexing time on the Sindice dataset.

We report in Figure 16 the trade-off between the to-
tal query processing time and the indexing time among
all the techniques on the Sindice dataset. The indexing
time has been obtained by summing up the commit and
optimise time from Table C.5. We can distinctively see
that the AFOR techniques achieve the best trade-off be-
tween indexing and querying time. AFOR-3 produce
very similar indexing and querying times to AFOR-1,
while providing a much better compression rate. It is
interesting to notice that PFOR provides a slightly bet-
ter querying time than FOR but at the price of a much
slower compression. Also, S-64 and VByte provide
a relatively close performance trade-off. To conclude,
AFOR-3 seems to offer the best compromise between
querying time, indexing time, and compression rate.

5.4. Discussion

In general, even if FOR has more data to read and
decompress, it still provides one of the best query exe-
cution time. The reason is that our experiments are per-
formed using warm cache. We therefore ignore the cost

25



of disk IO accesses and measure exclusively the decom-
pression efficiency of the methods. With a cold cache,
i.e., when IO disk accesses have to be performed, we
expect a drop of performance for algorithms with a low
compression ratio such as FOR and PFOR compared to
AFOR-2 and AFOR-3. Future work will investigate this
aspect.

Compression and decompression performance do not
only depend on the compression ratio, but also on the
execution flow of the algorithm and on the number of
cycles needed to compress or decompress an integer.
Therefore, CPU-optimised algorithms which provides
at the same time a good compression ratio are more
likely to increase the update and query throughputs of
web search engines. In that context, AFOR seems to
be a good candidate since it is well balanced in all as-
pects: it provides very good indexing and querying per-
formance and one of the best compression ratio.

The Simple encoding family is somehow similar to
AFOR. At each iteration, S-64 encodes or decodes a
variable number of integers using CPU optimised rou-
tines. AFOR is however not tied to the size of a machine
word, is simpler to implement and provides better com-
pression ratio, compression speed and decompression
speed.

Another interesting property of AFOR which is not
discussed in this paper is its ability to skip quickly over
chunks of data without having to decode them. This
is not possible with techniques such as Rice, VByte or
PFOR. AFOR has to decode the bit frame to know the
length of the following frame, and is therefore able to
deduce the position of the next bit frame. Such a charac-
teristic could be leveraged to simplify the self-indexing
of inverted files [59].

5.5. Conclusion on High-Performance Compression
We presented AFOR, a novel class of compression

techniques for inverted lists which provide tremendous
benefit in the case of a node-based inverted index.
AFOR is specifically designed to increase update and
query throughput of web search engines. We have de-
scribed three different implementations of the AFOR
encoder class. We have compared AFOR to alternative
approaches, and have shown experimental evidences
that AFOR provides a well balanced trade-off between
three factors: indexing time, querying time and com-
pression ratio. In particular, AFOR-3 achieves similar
query processing times than FOR and PFOR, a better
compression rate than Rice and the best indexing times.

The results of the experiment lead to interesting con-
clusions. In particular and with respect to the node-
based indexing scheme, we have shown (1) that VByte

is inadequate due to its incapacity of efficiently encod-
ing small values; and (2) that PFOR provides only lim-
ited benefits compared to FOR. On the contrary, tech-
niques such as S-64 and AFOR which are able to adapt
their encoding based on the value distribution yield bet-
ter results.

6. Overall Scalability of the Retrieval System

In the previous experiments, we have seen that
AFOR-3 is the most suitable compression technique for
the node-based inverted index. Based on these results,
we decide to combine AFOR-3 and the node-based in-
dex in a large scale experiment which simulates the
conditions of a real Web Data search engine such as
Sindice. We use the full Sindice data collection to cre-
ate three indexes of increasing size and we generate a
set of star queries of increasing complexity. We com-
pare the query rate (queries per second) that the system
can answer with respect to the size of the index and the
complexity of the query.

Experimental Settings and Design. The experimental
settings and design are identical as the ones found in
Section 5.3.

Data Collection. We use the full Sindice data collec-
tion which is currently composed of more than 120 mil-
lions of documents among 90.000 datasets. For each
dataset, we extracted the entities as pictured in Fig-
ure 3. We filtered out all the entity descriptions contain-
ing less than two facts. After filtering, there is a total of
907,542,436 entities for 4,689,599,183 RDF statements.
We create three datasets: Small containing 226,129,319
entities for 1,240,674,545 RDF statements; Medium
containing 447,305,647 entities for 2,535,658,099 RDF
statements; and Large containing the complete collec-
tion of entities.

Query Benchmark Design. We generate star queries of
increasing complexity, starting with 1 attribute query up
to 16. Each attribute query is generated by selecting at
random (following a uniform distribution) an attribute
term from the high, medium or low selectivity ranges.
The associated value query is generated by selecting at
random (following a uniform distribution) a conjunc-
tion (2-AND or 4-AND) or a disjunction (2-OR or 4-
OR). Each term of the value query is selected from the
high, medium or low selectivity ranges at random (fol-
lowing a uniform distribution). Such a query generation
scheme provides star queries of average complexity, i.e.,
queries composed of terms from any selectivity range.

26



With respect to the creation of the three selectivity
ranges for the value terms, we observed the presence of
a longer tail in the term frequency distribution compared
to the previous experiment. Consequently, we modified
the way the ranges are computed. The high range rep-
resents the first k words whose cumulative frequency is
50% of all word occurrences. The medium range ac-
counts for the next 30%, and the low range is composed
of all the remaining words.

For each type of star query, we (1) generate a set
of 400 random queries, and (2) perform 100 measure-
ments. Each measurement is made as explained in Sec-
tion 5.3.2 using warm cache. A measurement records
the query rate, i.e., the number of query the system can
process per second, using a single thread. As recom-
mended in [79], we report the harmonic mean and the
standard deviation of the 100 measurements.

The design of the scalability benchmark includes
three factors:

Dataset having three levels: Small, Medium and
Large.

Query Size having five levels: 1, 2, 4, 8, and 16.
Term Selectivity having two levels: Low-Medium-

High (LMH) and Medium-High (MH).

Each condition of the design, e.g., Small / 4 / LMH, con-
tains 100 separate measurements. The term selectivity
denotes the selectivity ranges that has been used to gen-
erate the query terms. For example, the MH selectivity
level means that all the query terms have been generated
from either the medium or high range.

6.1. Indexing Performance

We report that during the indexing of the data col-
lection per batch of 100,000 entities, the commit time
stayed constant, with an average commit time of 2062
milliseconds. The optimisation of the full index were
performed in 119 minutes. The size of the five inverted
files is 19.279 GB, with 10.912 GB for the entity file,
0.684 GB for the frequency file, 3.484 GB for the at-
tribute file, 1.810 GB for the value file and 2.389 GB
for the position file. The size of the dictionary is 8.808
GB and the size of the skip lists, i.e., the data structure
for self-indexing, is 7.644 GB. The total size of the in-
dex is 35.731 GB which represents an average of 8 bytes
per RDF statement.

6.2. Querying Performance

We report the results of the scalability benchmark in
Table C.6. Based on these results, we derive two graph-
ical charts in Figure 17 to better visualise the evolution

of the query rate with respect to the size of the dataset
and the complexity of the queries.

With respect to the size of the queries, we can ob-
serve that the query rate increases with the number of
attribute value pairs until a certain point (up to 2 or 4
pairs), and then starts to decrease. The lowest query rate
is obtained when the star query is composed of only one
attribute query. Such a query produces a higher num-
ber of hits compared to other queries, and as a conse-
quence the system has to read more data. For example,
in Table C.6, we can see that the amount of data read
is at least three times higher than in any other queries.
On the other hand, the precision of the query increases
with the number of attribute queries, and the chance of
having a large number of hits decreases consequently.
In that case, the self-indexing technique provides con-
siderable benefits since it enables the system to avoid a
large amount of unnecessary record comparisons and to
answer complex queries in sub-linear time.

Concerning the term selectivity, we can note a drop
of query rate between Figure 17a where query terms
of low selectivity are employed and Figure 17b where
query terms of low selectivity is not employed. In the
later case, the system has to perform more record com-
parisons. Whenever a term with a low selectivity is used
in the query, the system is able to take advantage of the
self-indexing and to skip a larger number of records dur-
ing query processing.

The size of the data collection has only a limited im-
pact on the query rate. The reason is that the query pro-
cessing complexity is bound by the size of the inverted
lists which is itself dependent of the term distribution.
Therefore, the size of the data collection has a weak in-
fluence on the size of the inverted lists, apart for very
frequent terms. A term with a low or medium selectivity
will have a short inverted lists even if the data collection
is very large.

To conclude, the results show that the query rate of
the system scales gracefully with the size of the data and
the complexity of the query. A single-threaded system
is able to sustain a query rate of 17 queries per second
up to 292 queries per second depending of the kind of
queries. At this rate, the system is able to support many
requests, or users, at the same time.

7. Conclusions and Future Work

In this article, we have introduced an entity retrieval
model for decentralised infrastructures providing semi-
structured data such as the Semantic Web. The Entity
Attribute-Value model is generic enough to be compat-
ible with various semi-structured data models such as

27



1 2 4

100

200

300

q/
s

Small Medium Large

(a) Query rate with LMH selectiv-
ity

1 2 4

50

100

150

q/
s

Small Medium Large

(b) Query rate with MH selectivity

Figure 17: The evolution of the average query rate with
respect to the size of the star queries over different
dataset size.

RDF or Microformats. This retrieval model provide a
common framework for the development of techniques
which are applicable not only for Web Data search but
on a wider variety of scenarios.

We have introduced a node-based indexing scheme
that fulfils the requirements of our entity retrieval
model. Compared to other entity retrieval systems, such
a retrieval system is able to provide semi-structured
search while sustaining fast query processing and ef-
ficient index maintenance. Since the performance of
the retrieval system is a key issue in large web search
engines, we have developed a high-performance com-
pression technique which is particularly efficient with
respect to the node-based inverted index described in
this article. Finally, we have shown that the resulting
retrieval system can index billions of data objects and
can answer a large number of complex requests per sec-
ond on hardware less powerful than the average laptop
available today.

Future work will concentrate on increasing the query
expressiveness of the system. We have to investigate
the feasibility of path-based queries which will enable
to query relations between entities. Supporting such
queries while keeping a system in the same class of scal-
ability is still an open problem.

Appendix A. Examples of Algebra Queries

Value Query.

Q1:. Find all entities with a value matching keywords
renaud and delbru.

Q1 = πe(σv:renaud(σv:delbru(R)))
= πe(σv:renaud∧v:delbru(R)) (Q1)

Attribute Query.

Q2:. Find all entities with a value matching keywords
john and smith associated to an attribute matching the
keyword author.

Q2 = πe(σat:author(σv: john∧v:smith(R)))
= πe(σat:author∧v: john∧v:smith(R)) (Q2)

Star Query.

Q3:. Find all entities with a value matching keywords
john and smith associated to an attribute matching the
keyword author, and a value matching keywords search
and engine associated to an attribute matching the key-
word title.

R1 = πe(σat:author(σv: john∧v:smith(R)))
R2 = πe(σat:title(σv:search∧v:engine(R)))
Q3 = R1 ∩ R2 (Q3)

Dataset Query.

Q4:. Find all entities from the dataset biblio with a
value matching keywords john and smith associated to
an attribute matching the keyword author, and a value
matching keywords search and engine associated to an
attribute matching the keyword title.

R1 = πd,e(σat:author(σv: john∧v:smith(R)))
R2 = πd,e(σat:title(σv:search∧v:engine(R)))
Q4 = πe(σd:biblio(R1 ∩ R2)) (Q4)

Q5:. Find all datasets with two entities, the first one
with a value matching keywords john and smith associ-
ated to an attribute matching the keyword name, and the
second one with a value matching keywords search and
engine associated to an attribute matching the keyword
title.

R1 = πd(σat:name(σv: john∧v:smith(R)))
R2 = πd(σat:title(σv:search∧v:engine(R)))
Q5 = R1 ∩ R2 (Q5)

Appendix B. Results of the Compression Bench-
mark

This appendix provides tables containing the results
of the benchmarks that have been performed for com-
paring the indexing and querying performance of the
node-based index with various compression algorithms.
Tables C.5 have been used for generating the charts
from Section 5.3.1. Tables B.4 have been used for gen-
erating the charts from Section 5.3.2.

28



Appendix C. Results of the Scalability Benchmark

This appendix provides the table containing the re-
sults of the scalability benchmark. Table C.6 has been
used for generating the charts from Section 6.2.

Appendix D. Source Code

The source code of SIREn is publicly available at
http://siren.sindice.com/. The source code of
the benchmark platform and of the compression algo-
rithms as well as the datasets and raw experimental re-
sults are available on request.

References

[1] R. A. Baeza-Yates, B. Ribeiro-Neto, Modern Information Re-
trieval, Addison-Wesley Longman Publishing Co., Inc., 1999.

[2] R. Baeza-Yates, C. Castillo, F. Junqueira, V. Plachouras, F. Sil-
vestri, Challenges on Distributed Web Retrieval, in: Proceed-
ings of the 23rd International Conference on Data Engineering,
IEEE, 2007, pp. 6–20. doi:10.1109/ICDE.2007.367846.

[3] S. Abiteboul, Querying Semi-Structured Data, in: Proceedings
of the 6th International Conference on Database Theory, 1997,
pp. 1–18.

[4] J. Pound, P. Mika, H. Zaragoza, Ad-hoc object retrieval in the
web of data, in: Proceedings of the 19th international conference
on World Wide Web, ACM Press, New York, New York, USA,
2010, pp. 771–780. doi:10.1145/1772690.1772769.

[5] R. Baeza-Yates, G. Navarro, Integrating contents and struc-
ture in text retrieval, SIGMOD Rec. 25 (1) (1996) 67–79.
doi:http://doi.acm.org/10.1145/381854.381890.

[6] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram, XRANK:
ranked keyword search over XML documents, in: Proceed-
ings of the 2003 ACM SIGMOD international conference on
on Management of data - SIGMOD ’03, ACM Press, New York,
New York, USA, 2003, pp. 16–27. doi:10.1145/872757.872762.

[7] S. Cohen, J. Mamou, Y. Kanza, Y. Sagiv, XSEarch: a seman-
tic search engine for XML, in: Proceedings of the 29th inter-
national conference on Very large data bases - VLDB ’2003,
VLDB Endowment, 2003, pp. 45–56.

[8] Z. Liu, J. Walker, Y. Chen, XSeek: a semantic XML search en-
gine using keywords, in: Proceedings of the 33rd international
conference on Very large data bases, 2007, pp. 1330–1333.

[9] R. Schenkel, A. Theobald, G. Weikum, Semantic Similarity
Search on Semistructured Data with the XXL Search Engine, In-
formation Retrieval 8 (4) (2005) 521–545. doi:10.1007/s10791-
005-0746-3.

[10] M. Theobald, R. Schenkel, G. Weikum, An Efficient and Versa-
tile Query Engine for TopX Search, in: Proceedings of the 31st
international conference on Very Large Data Bases, 2005, pp.
625–636.

[11] N. Walsh, M. Fernández, A. Malhotra, M. Nagy, J. Marsh,
XQuery 1.0 and XPath 2.0 data model (XDM), W3C recom-
mendation, W3C (January 2007).

[12] Q. Li, B. Moon, Indexing and Querying XML Data for Regu-
lar Path Expressions, in: Proceedings of the 27th International
Conference on Very Large Data Bases, 2001, pp. 361–370.

[13] H. He, H. Wang, J. Yang, P. S. Yu, Compact reachability label-
ing for graph-structured data, in: Proceedings of the 14th ACM

international conference on Information and knowledge man-
agement - CIKM ’05, ACM Press, New York, New York, USA,
2005, pp. 594–601. doi:10.1145/1099554.1099708.

[14] W. Haixun, H. Hao, Y. Jun, P. Yu, J. Yu, Dual Labeling: Answer-
ing Graph Reachability Queries in Constant Time, in: Proceed-
ings of the 22nd International Conference on Data Engineering
(ICDE’06), IEEE, 2006, pp. 75–75. doi:10.1109/ICDE.2006.53.

[15] R. Goldman, J. Widom, DataGuides: Enabling Query Formu-
lation and Optimization in Semistructured Databases, in: Pro-
ceedings of the 23rd International Conference on Very Large
Data Bases, 1997, pp. 436–445.

[16] B. F. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason,
M. Shadmon, A Fast Index for Semistructured Data, in: Pro-
ceedings of the 27th International Conference on Very Large
Data Bases, 2001, pp. 341–350.

[17] W. Wang, H. Jiang, H. Wang, X. Lin, H. Lu, J. Li, Efficient pro-
cessing of XML path queries using the disk-based F&B Index,
in: Proceedings of the 31st international conference on Very
Large Data Bases, 2005, pp. 145–156.

[18] H. Wang, S. Park, W. Fan, P. S. Yu, ViST: a dynamic index
method for querying XML data by tree structures, in: Proceed-
ings of the 2003 ACM SIGMOD international conference on on
Management of data, ACM Press, New York, New York, USA,
2003, pp. 110–121. doi:10.1145/872757.872774.

[19] P. Roa, B. Moon, PRIX: indexing and querying XML using
prufer sequences, in: Proceedings of the 20th International Con-
ference on Data Engineering, IEEE Computer Society, 2004, pp.
288–299. doi:10.1109/ICDE.2004.1320005.

[20] X. Meng, Y. Jiang, Y. Chen, H. Wang, XSeq: an indexing in-
frastructure for tree pattern queries, in: Proceedings of the 2004
ACM SIGMOD international conference on Management of
data - SIGMOD ’04, ACM Press, New York, New York, USA,
2004, pp. 941–942. doi:10.1145/1007568.1007709.

[21] P. Ferragina, F. Luccio, G. Manzini, S. Muthukrishnan, Com-
pressing and searching XML data via two zips, in: Proceed-
ings of the 15th international conference on World Wide Web -
WWW ’06, ACM Press, New York, New York, USA, 2006, pp.
751–760. doi:10.1145/1135777.1135891.

[22] N. Grimsmo, Faster Path Indexes for Search in XML Data,
in: Proceedings of the nineteenth conference on Australasian
database, 2008, pp. 127–135.

[23] H. Su-Cheng, L. Chien-Sing, Node Labeling Schemes in XML
Query Optimization: A Survey and Trends, IETE Technical Re-
view 26 (2) (2009) 88. doi:10.4103/0256-4602.49086.

[24] A. Halevy, M. Franklin, D. Maier, Principles of dataspace
systems, in: Proceedings of the twenty-fifth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database sys-
tems, Chicago, IL, USA, 2006.

[25] X. Dong, A. Halevy, Indexing dataspaces, Proceed-
ings of the 2007 ACM SIGMOD international confer-
ence on Management of data - SIGMOD ’07 (2007)
43doi:10.1145/1247480.1247487.

[26] D. Beckett, J. Grant, Semantic Web Scalability and Storage:
Mapping Semantic Web Data with RDBMSes, SWAD-Europe
deliverable, W3C (January 2003).

[27] A. Harth, J. Umbrich, A. Hogan, S. Decker, YARS2: A Feder-
ated Repository for Querying Graph Structured Data from the
Web, in: Proceedings of the 6th International Semantic Web
Conference and 2nd Asian Semantic Web Conference, Vol. 4825
of Lecture Notes in Computer Science, Springer Verlag, 2007,
pp. 211–224.

[28] L. Baolin, H. Bo, HPRD: A High Performance RDF Database,
in: Proceedings of Network and Parallel Computing, IFIP Inter-
national Conference, Vol. 4672 of Lecture Notes in Computer
Science, Springer, 2007, pp. 364–374.

29



[29] C. Weiss, P. Karras, A. Bernstein, Hexastore - sextu-
ple indexing for semantic web data management, Proceed-
ings of the VLDB Endowment 1 (1) (2008) 1008–1019.
doi:10.1145/1453856.1453965.

[30] T. Neumann, G. Weikum, RDF-3X - a RISC-style Engine for
RDF, Proceedings of the VLDB Endowment 1 (1) (2008) 647–
659. doi:10.1145/1453856.1453927.

[31] D. J. Abadi, A. Marcus, S. R. Madden, K. Hollenbach, Scalable
semantic web data management using vertical partitioning, in:
VLDB ’07: Proceedings of the 33rd international conference on
Very large data bases, VLDB Endowment, 2007, pp. 411–422.

[32] R. Guha, R. McCool, E. Miller, Semantic search, in: Proceed-
ings of the 12th international conference on World Wide Web,
2003, pp. 700–709.

[33] L. Ding, R. Pan, T. Finin, A. Joshi, Y. Peng, P. Kolari, Finding
and Ranking Knowledge on the Semantic Web, in: Proceedings
of the 4th International Semantic Web Conference, 2005, pp.
156–170.

[34] A. Harth, A. Hogan, J. Umbrich, S. Decker, SWSE: Objects be-
fore documents!, in: Proceedings of the Billion Triple Seman-
tic Web Challenge, 7th International Semantic Web Conference,
2008.

[35] G. Cheng, W. Ge, Y. Qu, Falcons: searching and browsing en-
tities on the semantic web, in: Proceeding of the 17th interna-
tional conference on World Wide Web, ACM, 2008, pp. 1101–
1102.

[36] R. Bhagdev, S. Chapman, F. Ciravegna, V. Lanfranchi, D. Pe-
trelli, Hybrid Search: Effectively Combining Keywords and Se-
mantic Searches, in: Proceedings of the 5th European semantic
web conference on The semantic web: research and applica-
tions, Springer-Verlag, 2008, pp. 554–568.

[37] H. Wang, Q. Liu, T. Penin, L. Fu, L. Zhang, T. Tran, Y. Yu,
Y. Pan, Semplore: A scalable IR approach to search the Web
of Data, Web Semantics: Science, Services and Agents on the
World Wide Web 7 (3) (2009) 177–188.

[38] S. Agrawal, S. Chaudhuri, G. Das, DBXplorer: a system for
keyword-based search over relational databases, in: Proceed-
ings of the 18th International Conference on Data Engineer-
ing, IEEE Comput. Soc, San Jose, California, 2002, pp. 5–16.
doi:10.1109/ICDE.2002.994693.

[39] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, S. Su-
darshan, Keyword searching and browsing in databases using
BANKS, in: Proceedings of the 18th International Conference
on Data Engineering, IEEE Comput. Soc, 2002, pp. 431–440.
doi:10.1109/ICDE.2002.994756.

[40] V. Hristidis, Y. Papakonstantinou, Discover: keyword search in
relational databases, in: Proceedings of the 28th international
conference on Very Large Data Bases, 2002, pp. 670–681.

[41] F. Liu, C. Yu, W. Meng, A. Chowdhury, Effective keyword
search in relational databases, in: Proceedings of the 2006 ACM
SIGMOD international conference on Management of data -
SIGMOD ’06, ACM Press, Chicago, IL, USA, 2006, p. 563.
doi:10.1145/1142473.1142536.

[42] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. L.
Wiener, The Lorel query language for semistructured data,
International Journal on Digital Libraries 1 (1996) 68–88.
doi:10.1007/s007990050005.

[43] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai,
H. Karambelkar, Bidirectional expansion for keyword search on
graph databases, in: Proceedings of the 31st international con-
ference on Very large data bases, Trondheim, Norway, 2005, pp.
505–516.

[44] G. Li, B. C. Ooi, J. Feng, J. Wang, L. Zhou, EASE: an ef-
fective 3-in-1 keyword search method for unstructured, semi-
structured and structured data, in: Proceedings of the 2008

ACM SIGMOD international conference on Management of
data - SIGMOD ’08, Vancouver, Canada, 2008, pp. 903–914.
doi:10.1145/1376616.1376706.

[45] G. Kasneci, F. M. Suchanek, G. Ifrim, S. Elbassuoni, M. Ra-
manath, G. Weikum, NAGA: harvesting, searching and rank-
ing knowledge, in: Proceedings of the 2008 ACM SIG-
MOD international conference on Management of data -
SIGMOD ’08, Vancouver, Canada, 2008, pp. 1285–1288.
doi:10.1145/1376616.1376756.

[46] F. Mandreoli, R. Martoglia, G. Villani, W. Penzo, Flexible query
answering on graph-modeled data, in: Proceedings of the 12th
International Conference on Extending Database Technology:
Advances in Database Technology, ACM, Saint Petersburg,
Russia, 2009, pp. 216—-227. doi:10.1145/1516360.1516386.

[47] G. H. L. Fletcher, J. V. D. Bussche, D. V. Gucht, S. Vansum-
meren, Towards a theory of search queries, in: Proceedings of
the 12th International Conference on Database Theory, 2009,
pp. 201—-211.

[48] M. Catasta, R. Delbru, N. Toupikov, G. Tummarello, Manag-
ing Terabytes of Web Semantics Data, Springer, 2010, p. 93.
doi:10.1007/978-3-642-04329-1 6.

[49] R. Delbru, N. Toupikov, M. Catasta, G. Tummarello, S. Decker,
Hierarchical Link Analysis for Ranking Web Data, in: Proceed-
ings of the 7th Extended Semantic Web Conference (ESWC
2010), Springer, 2010, pp. 240–256. doi:10.1007/978-3-642-
13489-0 17.

[50] T. Berners-Lee, R. T. Fielding, H. F. Nielsen, Hypertext Transfer
Protocol – HTTP/1.0, RFC 1945, W3C (May 1996).

[51] D. Beckett, RDF/XML Syntax Specification (Revised), W3C
recommendation, W3C (February 2004).

[52] A. Harth, S. Kinsella, S. Decker, Using Naming Authority to
Rank Data and Ontologies for Web Search , in: The Semantic
Web - ISWC 2009, Springer Berlin Heidelberg, 2009, pp. 277 –
292. doi:10.1007/978-3-642-04930-9.

[53] P. M. Nadkarni, L. Marenco, R. Chen, E. Skoufos, G. Shep-
herd, P. Miller, Organization of heterogeneous scientific data us-
ing the EAV/CR representation., Journal of the American Med-
ical Informatics Association : JAMIA 6 (6) (1999) 478–493.
doi:10.1136/jamia.1999.0060478.

[54] D. Maier, Theory of Relational Databases, Computer Science
Press, 1983.

[55] R. Delbru, N. Toupikov, M. Catasta, G. Tummarello, S. Decker,
A Node Indexing Scheme for Web Entity Retrieval, in: Pro-
ceedings of the 7th Extended Semantic Web Conference (ESWC
2010), Springer, 2010, pp. 225–239. doi:10.1007/978-3-642-
13489-0 16.

[56] K. Beyer, S. D. Viglas, I. Tatarinov, J. Shanmugasundaram,
E. Shekita, C. Zhang, Storing and querying ordered xml using
a relational database system, in: SIGMOD ’02: Proceedings of
the 2002 ACM SIGMOD international conference on Manage-
ment of Data, ACM, New York, NY, USA, 2002, pp. 204–215.
doi:10.1145/564691.564715.

[57] J. Zobel, A. Moffat, Inverted files for text search
engines, ACM Computer Surveys 38 (2) (2006) 6.
doi:10.1145/1132956.1132959.

[58] C. D. Manning, P. Raghavan, H. Schtze, Introduction to Infor-
mation Retrieval, Cambridge University Press, New York, NY,
USA, 2008.

[59] A. Moffat, J. Zobel, Self-indexing inverted files for fast text
retrieval, ACM Trans. Inf. Syst. 14 (4) (1996) 349–379.
doi:10.1145/237496.237497.

[60] G. Graefe, Query evaluation techniques for large
databases, ACM Computing Surveys 25 (2) (1993) 73.
doi:10.1145/152610.152611.

[61] G. Graefe, B-tree indexes for high update rates, ACM SIGMOD

30



Record 35 (1) (2006) 39. doi:10.1145/1121995.1122002.
[62] L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter, R. Agarwal,

Dynamic maintenance of web indexes using landmarks, in: Pro-
ceedings of the 12th international conference on World Wide
Web, 2003, p. 102. doi:10.1145/775152.775167.

[63] S. Büttcher, C. L. A. Clarke, Index compression is good, espe-
cially for random access, in: Proceedings of the sixteenth ACM
conference on Conference on information and knowledge man-
agement - CIKM ’07, ACM Press, New York, New York, USA,
2007, pp. 761–770. doi:10.1145/1321440.1321546.

[64] J. Goldstein, R. Ramakrishnan, U. Shaft, Compressing re-
lations and indexes, in: Proceedings of the 14th In-
ternational Conference on Data Engineering, IEEE Com-
puter Society, Washington, DC, USA, 1998, pp. 370–379.
doi:10.1109/ICDE.1998.655800.

[65] V. N. Anh, A. Moffat, Inverted Index Compression Using Word-
Aligned Binary Codes, Information Retrieval 8 (1) (2005) 151–
166. doi:10.1023/B:INRT.0000048490.99518.5c.

[66] M. Zukowski, S. Heman, N. Nes, P. Boncz, Super-Scalar RAM-
CPU Cache Compression, in: Proceedings of the 22nd In-
ternational Conference on Data Engineering (ICDE’06), IEEE
Computer Society, Washington, DC, USA, 2006, pp. 59–59.
doi:10.1109/ICDE.2006.150.

[67] V. N. Anh, A. Moffat, Index compression using 64-bit words,
Software: Practice and Experience 40 (2) (2010) 131–147.
doi:10.1002/spe.948.

[68] P. Boldi, S. Vigna, Compressed Perfect Embedded Skip Lists
for Quick Inverted-Index Lookups, in: M. Consens, G. Navarro
(Eds.), Proceedings of the 12th International Conference on
String Processing and Information Retrieval, Vol. 3772 of Lec-
ture Notes in Computer Science, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005, pp. 25–28. doi:10.1007/11575832.

[69] J. Zhang, X. Long, T. Suel, Performance of compressed in-
verted list caching in search engines, in: Proceeding of the
17th international conference on World Wide Web - WWW ’08,
ACM Press, New York, New York, USA, 2008, pp. 387–396.
doi:10.1145/1367497.1367550.

[70] H. Yan, S. Ding, T. Suel, Inverted index compression and query
processing with optimized document ordering, in: Proceed-
ings of the 18th international conference on World Wide Web
- WWW ’09, ACM Press, New York, New York, USA, 2009,
pp. 401–410. doi:10.1145/1526709.1526764.

[71] V. N. Anh, A. Moffat, Structured Index Organizations for High-
Throughput Text Querying, in: Proceedings of the 13th Inter-
national Conference of String Processing and Information Re-
trieval, Springer, 2006, pp. 304–315. doi:10.1007/11880561 25.

[72] R. Sacks-davis, T. Dao, J. A. Thom, J. Zobel, Indexing docu-
ments for queries on structure, content and attributes, in: Pro-
ceedings of International Symposium on Digital Media Infor-
mation Base, World Scientific, 1997, pp. 236–245.

[73] A. Moffat, L. Stuiver, Binary Interpolative Coding for Effective
Index Compression, Information Retrieval 3 (1) (2000) 25–47.
doi:10.1023/A:1013002601898.

[74] R. Rice, J. Plaunt, Adaptive Variable-Length Coding for
Efficient Compression of Spacecraft Television Data, IEEE
Transactions on Communications 19 (6) (1971) 889–897.
doi:10.1109/TCOM.1971.1090789.
URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=1090789

[75] R. Venturini, F. Silvestri, Vsencoding: Efficient coding and fast
decoding of integer lists via dynamic programming, in: Pro-
ceedings of the nineteenth ACM conference on Conference on
information and knowledge management- CIKM’10, 2010.

[76] B. Boyer, Robust Java benchmarking (2008).
URL http://www.ibm.com/developerworks/java/

library/j-benchmark1.html

[77] S. Büttcher, C. L. A. Clarke, Hybrid index maintenance for con-
tiguous inverted lists, Information Retrieval 11 (3) (2008) 175–
207. doi:10.1007/s10791-007-9042-8.

[78] V. Ercegovac, D. J. DeWitt, R. Ramakrishnan, The TEXTURE
benchmark: measuring performance of text queries on a rela-
tional DBMS, in: Proceedings of the 31st international confer-
ence on Very large data bases, VLDB Endowment, 2005, pp.
313–324.

[79] D. J. Lilja, Measuring Computer Performance: A Prac-
titioner’s Guide, Cambridge University Press, 2000.
doi:10.1017/CBO9780511612398.

31



2 - AND 2 - OR 4 - AND 4 - OR 2 - Phrase 3 - Phrase

Method µ c σ MB µ c σ MB µ c σ MB µ c σ MB µ c σ MB µ c σ MB

DBpedia
AFOR-1 32.6 ±0.1 1.3 1.8 42.9 ±0.1 1.2 2.0 63.2 ±0.2 2.4 3.6 88.4 ±0.2 2.5 4.0 218.4 +2.1

−1.5 13.7 14.2 508.3 ±0.8 4.4 36.6

AFOR-2 37.7 ±0.1 1.2 1.7 47.8 ±0.1 1.7 1.9 74.1 ±0.4 3.0 3.3 98.6 ±0.2 2.5 3.7 253.2 +1.4
−1.9 12.9 13.2 569.3 ±0.8 4.6 33.8

AFOR-3 44.2 ±0.1 1.2 1.7 52.3 +0.6
−0.8 11.2 1.8 86.0 ±0.5 3.7 3.3 110.1 +0.3

−0.6 5.0 3.6 256.7 +1.6
−2.0 13.9 13.1 593.9 +5.9

−5.6 32.2 33.6

FOR 31.5 ±0.1 1.4 2.3 46.8 +0.4
−0.6 10.6 2.5 61.9 ±0.3 2.9 4.5 86.3 ±0.2 2.5 5.1 220.5 +2.3

−1.3 13.2 18.9 531.1 +7.0
−5.8 35.3 48.5

PFOR 44.2 +0.8
−0.7 17.1 2.3 52.2 ±0.1 1.3 2.5 83.1 +0.3

−0.2 2.7 4.5 106.8 +0.2
−0.3 2.6 5.0 225.1 ±0.3 2.7 16.5 521.1 +0.9

−0.8 4.5 41.9

Rice 75.4 ±0.1 1.6 1.7 98.8 +0.5
−0.7 8.9 1.8 148.0 ±0.4 3.1 3.3 190.5 ±0.5 3.7 3.7 604.8 +0.8

−0.9 4.9 12.1 1573.0 ±1.7 6.4 29.9

S-64 42.4 +0.3
−0.1 3.0 1.9 57.8 ±0.1 1.6 2.0 83.3 ±0.2 2.4 3.6 117.8 ±0.2 2.4 4.0 291.0 +2.0

−1.8 15.3 13.7 668.8 +1.0
−1.1 6.0 35.0

VByte 45.8 +0.7
−0.8 17.8 2.7 57.2 ±0.1 1.5 2.9 81.0 ±0.3 2.9 5.2 116.7 ±0.2 2.3 5.9 330.5 +1.3

−2.3 13.0 21.9 723.9 +1.0
−1.1 5.8 57.8

Geonames
AFOR-1 29.3 ±0.1 1.5 1.4 30.7 ±0.4 9.2 1.4 62.7 +0.7

−0.9 8.8 2.9 59.0 +0.3
−0.2 2.8 2.9 35.3 ±0.1 1.8 1.7 60.6 ±0.1 2.0 3.1

AFOR-2 36.6 +0.1
−0.3 4.3 1.4 33.7 ±0.1 1.6 1.4 69.3 ±0.8 8.5 2.9 72.0 +0.7

−0.9 8.6 2.9 40.4 +0.2
−0.1 2.4 1.6 68.1 ±0.2 2.5 2.8

AFOR-3 32.6 ±0.1 1.7 1.3 32.8 ±0.1 1.4 1.3 65.5 ±0.3 3.2 2.7 66.0 +0.2
−0.3 2.7 2.7 40.1 ±0.1 1.8 1.5 79.5 ±0.2 2.5 2.7

FOR 30.4 ±0.4 8.3 1.5 31.7 ±0.1 1.5 1.5 63.4 ±0.8 4.6 3.0 63.4 ±0.3 2.9 3.0 35.8 +0.9
−0.7 12.4 2.2 58.9 +0.7

−0.5 4.5 4.1

PFOR 37.8 ±0.1 2.1 1.5 38.1 ±0.1 1.9 1.5 78.2 ±0.9 9.8 3.0 77.1 +0.5
−0.4 4.7 3.0 45.7 +0.8

−0.5 14.1 2.2 87.6 +0.5
−1.2 10.5 4.0

Rice 69.0 ±0.1 2.1 1.5 69.4 ±0.2 2.9 1.5 141.0 ±0.8 6.5 3.0 139.0 ±0.5 3.9 3.0 89.4 +1.1
−1.0 11.9 1.8 134.3 ±0.4 2.9 3.2

S-64 41.0 ±0.1 2.3 1.8 42.5 +0.3
−0.4 8.0 1.8 82.8 +0.4

−0.3 3.8 3.6 80.7 ±0.3 2.8 3.6 53.9 ±0.1 2.2 1.8 75.7 ±0.3 2.8 3.1

VByte 40.2 ±0.1 1.4 2.9 39.8 ±0.1 1.3 2.9 85.7 +0.6
−0.9 8.0 5.8 80.7 ±0.2 2.1 5.8 46.7 ±0.1 1.3 3.2 77.8 ±0.1 1.9 5.7

Sindice
AFOR-1 31.4 ±0.1 1.3 1.8 40.6 +0.0

−0.1 1.1 1.9 76.7 ±0.2 2.0 3.5 83.6 +1.7
−1.8 19.9 3.7 300.3 +0.3

−0.4 2.9 19.1 1377.0 +1.3
−1.5 5.7 78.8

AFOR-2 36.8 ±0.1 1.4 1.6 51.9 +0.9
−1.0 14.6 1.7 73.5 ±0.2 2.3 3.2 99.3 +1.0

−1.5 13.3 3.4 329.9 ±0.4 3.2 17.5 1394.0 ±1.5 5.9 72.4

AFOR-3 36.3 ±0.1 1.3 1.6 45.6 ±0.1 1.2 1.7 72.0 ±0.4 3.0 3.1 85.6 ±0.2 2.3 3.2 325.0 +0.7
−0.8 4.1 16.9 1377.0 +1.5

−1.7 6.1 70.4

FOR 35.9 +0.7
−0.9 17.9 2.3 37.3 ±0.1 1.1 2.4 60.1 ±0.3 2.3 4.5 70.5 +0.1

−0.2 2.0 4.7 323.6 +3.9
−3.8 30.3 28.3 1382.0 +2.0

−1.8 7.8 116.3

PFOR 40.5 ±0.1 1.7 2.3 49.8 ±0.1 2.1 2.4 81.4 +1.3
−0.7 10.0 4.5 94.1 +0.3

−0.2 2.4 4.7 316.6 ±0.4 3.1 25.5 1282.0 +1.5
−1.7 6.4 103.0

Rice 68.5 ±0.2 2.0 1.8 82.4 ±0.1 1.5 1.9 151.0 ±0.5 3.7 3.6 155.8 ±0.4 2.9 3.7 848.3 +2.3
−3.1 14.9 18.6 3348.0 +1.8

−1.7 6.7 74.0

S-64 40.9 ±0.1 1.4 1.8 52.5 ±0.1 1.9 1.9 81.1 +0.3
−0.2 2.7 3.6 97.9 ±0.2 2.3 3.8 408.6 +2.5

−1.9 17.1 18.0 1700.0 +3.2
−3.0 12.2 74.5

VByte 40.3 +0.1
−0.0 1.1 2.8 61.1 ±0.1 1.7 3.0 79.5 ±0.2 2.2 5.5 111.5 +1.0

−1.7 14.6 5.8 462.3 +3.8
−4.3 31.7 31.5 1843.0 +1.8

−1.5 6.7 133.7

(a) Value Query

2 - AND 2 - OR 4 - AND 4 - OR 2 - Phrase 3 - Phrase

Method µ c σ MB µ c σ MB µ c σ MB µ c σ MB µ c σ MB µ c σ MB

DBpedia
AFOR-1 47.1 ±0.1 1.6 2.4 134.6 ±0.2 2.2 7.3 87.4 +1.3

−1.6 16.5 4.1 200.1 +0.5
−0.4 3.6 10.7 244.0 +0.3

−0.4 2.8 15.3 564.1 +5.3
−5.9 31.2 37.6

AFOR-2 64.0 ±0.1 2.1 2.2 132.5 ±0.3 2.7 6.8 103.0 +1.2
−1.6 15.3 3.8 220.0 +1.0

−1.8 10.3 9.9 282.3 +1.8
−2.6 17.0 14.2 594.4 +3.6

−2.2 15.2 34.7

AFOR-3 54.5 ±0.1 2.2 2.1 136.0 ±0.2 2.1 5.9 104.1 +0.6
−1.1 8.5 3.7 190.3 +0.4

−0.5 3.4 8.7 264.0 ±0.4 3.2 13.9 600.4 ±0.8 4.3 34.4

FOR 54.5 ±0.1 2.2 2.1 136.0 ±0.2 2.1 5.9 104.1 +0.6
−1.1 8.5 3.7 190.3 +0.4

−0.5 3.4 8.7 264.0 ±0.4 3.2 13.9 600.4 ±0.8 4.3 34.4

PFOR 61.3 +0.5
−0.3 4.7 3.1 146.1 ±0.2 2.4 8.7 117.1 ±0.5 4.2 5.3 199.3 ±0.5 3.9 12.7 249.3 +0.5

−0.4 3.5 18.0 578.2 +5.6
−6.1 32.6 43.3

Rice 107.0 ±0.2 2.4 2.3 312.2 ±0.4 3.2 6.8 192.8 +0.5
−0.4 3.2 3.9 475.5 +2.0

−2.4 12.2 9.8 677.0 +1.0
−0.9 5.2 13.2 1625.0 +2.0

−1.8 7.6 30.9

S-64 64.0 +1.2
−1.0 12.1 2.4 144.5 +0.4

−0.5 4.9 6.9 103.7 +0.4
−0.3 3.9 4.1 215.0 +0.6

−0.5 4.6 10.1 316.9 ±0.5 3.7 14.7 706.3 +1.1
−0.9 5.4 35.9

VByte 59.0 ±0.1 1.9 3.8 165.6 ±0.2 2.3 14.8 110.8 +1.3
−1.8 16.6 6.3 264.8 +2.3

−3.2 21.0 20.8 339.9 +0.3
−0.4 2.9 24.1 767.3 +7.3

−6.1 37.1 59.8

Geonames
AFOR-1 42.9 ±0.1 2.1 1.7 84.0 +0.3

−0.2 2.7 2.4 71.9 ±0.2 2.5 3.2 117.9 ±0.3 3.5 4.4 64.2 ±0.1 2.0 2.1 78.8 ±0.2 2.5 3.4

AFOR-2 55.6 +1.1
−1.3 18.7 1.7 91.2 +0.1

−0.2 1.9 2.3 85.9 +1.9
−1.5 19.1 3.1 129.8 ±0.5 3.6 4.3 59.8 +0.3

−0.2 2.7 2.0 90.1 ±0.3 3.3 3.2

AFOR-3 50.5 +1.3
−1.1 19.6 1.5 70.2 ±0.1 2.0 1.9 89.8 +2.0

−2.2 23.4 2.9 137.2 +2.8
−3.2 23.8 3.5 69.9 +0.9

−1.3 11.6 1.7 87.5 +0.5
−0.4 3.5 2.9

FOR 41.6 ±0.2 2.6 1.9 80.5 ±0.1 2.2 2.6 68.8 ±0.3 2.9 3.4 111.3 ±0.5 3.7 4.6 51.9 ±0.2 2.6 2.7 77.4 ±0.5 3.9 4.7

PFOR 56.3 ±0.3 3.2 2.0 81.0 ±0.3 2.9 2.7 94.1 +0.2
−0.3 2.8 3.5 137.5 ±0.6 4.6 4.7 67.4 ±0.2 3.1 2.8 98.2 ±0.3 3.5 4.5

Rice 97.5 +0.2
−0.3 2.7 1.9 158.1 +1.1

−0.5 5.7 2.5 165.2 ±0.5 4.2 3.4 272.8 +0.4
−0.3 2.8 4.6 120.8 ±0.2 2.6 2.2 173.5 ±0.4 3.2 3.6

S-64 60.6 +1.4
−1.3 21.1 2.1 83.7 +0.3

−0.2 3.0 2.6 96.0 +0.6
−0.4 3.8 3.8 168.9 ±0.5 4.0 4.9 75.4 +1.5

−1.6 17.7 2.2 99.3 ±0.3 3.4 3.5

VByte 57.9 +1.3
−1.0 17.6 3.9 91.9 ±0.2 2.5 6.8 95.2 ±0.3 3.4 6.8 159.2 ±0.5 3.5 12.5 82.7 +0.2

−0.1 2.2 4.5 116.1 +2.0
−2.5 24.5 6.9

Sindice
AFOR-1 55.5 ±0.1 1.9 2.1 192.9 ±0.2 2.4 8.2 77.8 ±0.2 2.4 3.9 311.1 ±0.4 3.1 14.4 310.3 +0.8

−0.7 4.0 19.0 1297.0 +1.7
−1.5 6.2 78.0

AFOR-2 53.3 ±0.1 1.6 1.9 229.2 ±0.4 3.0 7.5 105.1 +0.8
−1.4 11.3 3.5 330.7 +4.8

−3.5 32.3 13.2 341.0 +0.7
−0.8 4.0 17.4 1484.0 +1.3

−1.5 5.6 71.7

AFOR-3 52.1 ±0.1 1.9 1.8 180.2 +0.2
−0.3 2.5 5.5 88.7 ±0.2 2.5 3.3 291.2 ±0.4 3.2 10.0 334.8 ±0.4 2.9 16.6 1413.0 +1.7

−1.3 5.9 69.6

FOR 46.4 +0.7
−0.4 8.0 3.0 197.0 +0.5

−0.4 3.2 15.3 76.2 +0.2
−0.3 2.6 5.3 314.3 +0.5

−0.4 3.3 25.4 319.1 ±0.8 4.2 29.1 1304.0 +2.0
−1.5 7.1 115.9

PFOR 67.4 +1.2
−1.4 14.6 2.8 193.9 ±0.4 2.9 9.2 100.5 +0.4

−0.5 3.2 5.0 316.1 ±0.4 3.2 17.0 358.7 ±0.4 3.1 25.5 1348.0 ±1.8 7.4 102.3

Rice 100.4 ±0.2 2.3 2.4 481.3 +0.8
−0.6 3.8 10.9 170.5 +0.5

−0.4 3.4 4.1 797.8 +6.3
−4.8 30.6 18.5 825.6 +1.0

−0.9 5.3 19.2 3808.0 ±1.8 7.6 73.9

S-64 58.8 ±0.2 2.4 2.1 213.2 +2.5
−1.3 13.8 7.5 99.9 ±0.2 2.3 3.9 342.7 +0.7

−0.8 4.0 13.3 416.9 +1.6
−2.6 16.0 17.8 1724.0 +2.0

−1.8 7.8 73.7

VByte 58.8 +1.1
−0.6 12.8 3.8 311.3 +0.3

−0.4 3.0 25.9 97.8 ±0.2 2.2 6.5 478.1 +9.4
−9.6 53.0 42.5 438.4 +0.6

−0.4 4.1 32.7 1916.0 +1.5
−1.7 6.3 133.1

(b) Attribute Query

Table B.4: Query time execution for per query type, algorithm and dataset. We report for each query type the
arithmetic mean (µ in millisecond), the confidence interval with 95% confidence level for the mean (c in millisecond),
the standard deviation (σ in millisecond) and the total amount of data read during query processing (MB in megabyte).

32



Time (s) Sizes (GB)

Method Total Opt Ent Frq Att Val Pos Total

AFOR-1 536 139 0.246 0.043 0.141 0.065 0.180 0.816

AFOR-2 540 142 0.229 0.039 0.132 0.059 0.167 0.758

AFOR-3 562 158 0.229 0.031 0.131 0.054 0.159 0.736

FOR 594 158 0.315 0.061 0.170 0.117 0.216 1.049

PFOR 583 167 0.317 0.044 0.155 0.070 0.205 0.946

Rice 612 239 0.240 0.029 0.115 0.057 0.152 0.708

S-64 558 162 0.249 0.041 0.133 0.062 0.171 0.791

VByte 577 164 0.264 0.162 0.222 0.222 0.245 1.335

(a) DBpedia

Time (s) Sizes (GB)

Method Total Opt Ent Frq Att Val Pos Total

AFOR-1 729 114 0.129 0.023 0.058 0.025 0.025 0.318

AFOR-2 732 107 0.123 0.023 0.057 0.024 0.024 0.307

AFOR-3 724 103 0.114 0.006 0.056 0.016 0.008 0.256

FOR 748 102 0.150 0.021 0.065 0.025 0.023 0.349

PFOR 741 134 0.154 0.019 0.057 0.022 0.023 0.332

Rice 787 183 0.133 0.019 0.063 0.029 0.021 0.327

S-64 740 123 0.147 0.021 0.058 0.023 0.023 0.329

VByte 737 141 0.216 0.142 0.143 0.143 0.143 0.929

(b) Geonames

Time (s) Sizes (GB)

Method Total Opt Ent Frq Att Val Pos Total

AFOR-1 13734 1816 2.578 0.395 0.942 0.665 1.014 6.537

AFOR-2 13975 1900 2.361 0.380 0.908 0.619 0.906 6.082

AFOR-3 13847 1656 2.297 0.176 0.876 0.530 0.722 5.475

FOR 14978 1749 3.506 0.506 1.121 0.916 1.440 8.611

PFOR 14839 2396 3.221 0.374 1.153 0.795 1.227 7.924

Rice 15571 3281 2.721 0.314 0.958 0.714 0.941 6.605

S-64 14107 2163 2.581 0.370 0.917 0.621 0.908 6.313

VByte 13223 3018 3.287 2.106 2.411 2.430 2.488 15.132

(c) Sindice

Table C.5: Total indexing time, optimise time and index size.

1 2 4 8 16

Selectivity µ c σ MB µ c σ MB µ c σ MB µ c σ MB µ c σ MB

Small

LMH 66.9 ±0.03 0.2 165.7 198.9 +1.42
−1.14 6.8 55.8 292.3 +0.51

−1.26 3.6 31.6 145.5 +1.3
−1.12 6.4 50.2 94.1 +0.87

−0.82 4.4 65.7

MH 24.6 +0.16
−0.15 0.8 424.8 112.9 +0.82

−0.76 4.1 90.3 97.3 +0.08
−0.18 0.6 121.6 90.7 +0.65

−0.7 3.4 110.7 85.7 +0.71
−0.73 3.6 91.3

Medium

LMH 56.2 +0.04
−0.05 0.2 188.0 209.2 +1.53

−1.52 7.8 52.5 272.6 +1.63
−0.81 6.2 33.2 191.8 +2.16

−2.0 10.7 18.7 120.5 +0.12
−0.17 0.7 40.0

MH 17.5 +0.03
−0.02 0.1 301.8 116.0 ±0.66 3.4 80.8 158.0 +1.26

−1.36 6.5 72.6 109.0 +0.98
−0.87 4.8 74.1 103.8 ±1.13 5.7 70.8

Large

LMH 28.1 ±0.02 0.1 377.4 244.5 +0.21
−0.24 1.1 51.2 230.8 +0.21

−0.24 1.2 41.6 152.3 +1.64
−1.54 8.2 50.2 105.4 +0.74

−0.97 4.0 58.4

MH 20.3 +0.02
−0.04 0.1 543.3 128.7 ±0.1 0.5 100.1 106.4 +0.1

−0.18 0.7 103.7 108.0 +0.38
−0.64 2.3 95.2 58.2 +0.13

−0.17 0.7 96.7

Table C.6: Query rate per dataset, term selectivity and query size. We report for each query size the arithmetic mean
(µ in queries per second), the confidence interval with 95% confidence level for the mean (c in queries per second),
the standard deviation (σ in queries per second) and the total amount of data read during query processing (MB in
megabyte).

33


